Category Archives: Product Catalog

China wholesaler Arrow Zn-BS70 Wear Resistance Twin Screw Extruder Machine Elements Kneading Block ball screw shaft manufacturer

Product Description

 

Overview 
Product Description

Screw elements are crucial components in twin screw extruders, playing a pivotal role in determining the quality and output of plastic products. These elements are responsible for various essential functions, including plastic molecular mixing, cutting, spreading, and facilitating reactions among the materials. To ensure exceptional production quality, our company has leveraged years of experience, incorporated valuable insights from international practices, and carefully considered customer requirements to develop a comprehensive range of processing screw elements

 

our meticulously designed screw elements offer a multitude of benefits, prominently featuring exceptional self-cleaning performance. This remarkable attribute guarantees the integrity of the entire production line. Furthermore, our screw elements boast a combination of superior characteristics, including optimum parameters, high self-cleaning efficiency, remarkable wear resistance, and outstanding corrosion resistance.

 

Through the thoughtful integration of our expertise and customer feedback, we have successfully created a refined selection of screw elements that not only meet but exceed industry standards. These elements ensure the highest quality and output for plastic products, empowering our clients to achieve superior results in their operations.

 

 
Screw for Plastic Extruder
1.All sizes of the screw are 38CrMnAlA Nitrided steel +Special Alloy Spraying Welding on the whole screw thread surface.
2. For twin screw barrel material: A. Integral barrel Standard Alloy spraying B. Two parts Bimetallic sleeve C. High Calcium filler abrasion resistant .
3. For single screw barrel: Main Barrel + feeding sleeve zone as basic structure with A type as standard, A: Integral barrel Standard Alloy spraying B:Two parts Bimetallic sleeve .

Basic Info. 

Place of Origin: ZheJiang , China  Brand Name: Arrow
Condition: New  Material: 40CrNiMoA
Weight (KG): 50 Spare Parts Type:
Barrel
Video outgoing-inspection:
Provided
Machinery Test Report:
Provided
Warranty:1 year Key Selling Points:
Sustainable
Applicable Industries:
Manufacturing Plant, Machinery Repair Shops
Item:
Bi-metal screw and barrel
Material for screw:
38CrMnAlA Nitrided steel
 
Material for barrel:
40CrNiMoA+SKDII with heat treatment
 
Screw finish:
Nitrogen-filled (0.50~0.70mm depth)
 
Core of the screw:
Auto control for temperature
 
Screw type:
Single/ Double
 
Rotate speed of screw:
0-48
Double screw type:
Conical/Parallel
 
Barrel design for double screw:
One body/two parts     
 

Application:

-For wear application:
 Tool Steel: W6Mo5Cr4V2
  PM-HIP material: WR5, WR13, WR14, CPM10V, CPM9V.
-For corrosion application:
  38CrMoAla
  PM-HIP material: WR4, WR13, WR14, CPM10V, CPM9V.
-For wear and corrosion application:
  PM-HIP material: WR13, WR14, CPM10V, CPM9V.
-Other materials:
  Stainless Steel:316L,440C etc.

Key Features:

  1. Tool steel, the steel has a high hardenability and thermal cracking resistance, the steel contains a higher content of tungsten, molybdenum,chromium and alum, good wear resistance, toughness is relatively weakened, with good heat resistance.
  2. High hardness,
  3. HRC up to 65.

Service

24-hour Hotline
 
No matter when and where you are,
call us and we can find our service to you.
 
 
Pre-sales Consultation
 
We have 5 sales people online, and whether you have any question can be solved through online communication,    and welcome to your consultation.
After-sales Services

you can receive products to our company and we will help
you deal with till you get satisfied with.

FAQ
 
How long does it take to get my products since I paid for them?
—According to your order, we will give you a reasonable delivery date.

How is your after-sale service?
—You will get our help in time as long as you find something wrong about our produces. Believe us, you deserve the best.
 
What machine does the product apply to?
—Twin Screw Extruder Machine.

Certification 
Exhibition 

Company Profile 
ZheJiang Arrow Machinery Co., Ltd.is a company specializing in R&D, production, sales, application promotion of food engineering projects. As 1 of the largest scaled food processing equipment &whole plant engineering problem solvers in China, machines served for more than 970 companies, export to 116 countries, area, more than 20 years engineering team, we recognize that quality equals value, aims to create a great future together with global customers.

After-sales Service: Online 24/7 Installation Guide
Warranty: 1 Year
Condition: New
Samples:
US$ 99999/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

screwshaft

Types of Screw Shafts

Screw shafts come in various types and sizes. These types include fully threaded, Lead, and Acme screws. Let’s explore these types in more detail. What type of screw shaft do you need? Which one is the best choice for your project? Here are some tips to choose the right screw:

Machined screw shaft

The screw shaft is a basic piece of machinery, but it can be further customized depending on the needs of the customer. Its features include high-precision threads and ridges. Machined screw shafts are generally manufactured using high-precision CNC machines or lathes. The types of screw shafts available vary in shape, size, and material. Different materials are suitable for different applications. This article will provide you with some examples of different types of screw shafts.
Ball screws are used for a variety of applications, including mounting machines, liquid crystal devices, measuring devices, and food and medical equipment. Various shapes are available, including miniature ball screws and nut brackets. They are also available without keyway. These components form a high-accuracy feed mechanism. Machined screw shafts are also available with various types of threaded ends for ease of assembly. The screw shaft is an integral part of linear motion systems.
When you need a machined screw shaft, you need to know the size of the threads. For smaller machine screws, you will need a mating part. For smaller screw sizes, the numbers will be denominated as industry Numeric Sizes. These denominations are not metric, but rather in mm, and they may not have a threads-per-inch designation. Similarly, larger machine screws will usually have threads that have a higher pitch than those with a lower pitch.
Another important feature of machine screws is that they have a thread on the entire shaft, unlike their normal counterparts. These machine screws have finer threads and are intended to be screwed into existing tapped holes using a nut. This means that these screws are generally stronger than other fasteners. They are usually used to hold together electronic components, industrial equipment, and engines. In addition to this, machine screws are usually made of a variety of materials.

Acme screw

An Acme screw is the most common type of threaded shaft available. It is available in a variety of materials including stainless steel and carbon steel. In many applications, it is used for large plates in crushing processes. ACME screws are self-locking and are ideal for applications requiring high clamping force and low friction. They also feature a variety of standard thread forms, including knurling and rolled worms.
Acme screws are available in a wide range of sizes, from 1/8″ to 6″. The diameter is measured from the outside of the screw to the bottom of the thread. The pitch is equal to the lead in a single start screw. The lead is equal to the pitch plus the number of starts. A screw of either type has a standard pitch and a lead. Acme screws are manufactured to be accurate and durable. They are also widely available in a wide range of materials and can be customized to fit your needs.
Another type of Acme screw is the ball screw. These have no back drive and are widely used in many applications. Aside from being lightweight, they are also able to move at faster speeds. A ball screw is similar to an Acme screw, but has a different shape. A ball screw is usually longer than an Acme screw. The ball screw is used for applications that require high linear speeds. An Acme screw is a common choice for many industries.
There are many factors that affect the speed and resolution of linear motion systems. For example, the nut position and the distance the screw travels can all affect the resolution. The total length of travel, the speed, and the duty cycle are all important. The lead size will affect the maximum linear speed and force output. If the screw is long, the greater the lead size, the higher the resolution. If the lead length is short, this may not be the most efficient option.
screwshaft

Lead screw

A lead screw is a threaded mechanical device. A lead screw consists of a cylindrical shaft, which includes a shallow thread portion and a tightly wound spring wire. This spring wire forms smooth, hard-spaced thread convolutions and provides wear-resistant engagement with the nut member. The wire’s leading and trailing ends are anchored to the shaft by means appropriate to the shaft’s composition. The screw is preferably made of stainless steel.
When selecting a lead screw, one should first determine its critical speed. The critical speed is the maximum rotations per minute based on the natural frequency of the screw. Excessive backlash will damage the lead screw. The maximum number of revolutions per minute depends on the screw’s minor diameter, length, assembly alignment, and end fixity. Ideally, the critical speed is 80% of its evaluated critical speed. A critical speed is not exceeded because excessive backlash would damage the lead screw and may be detrimental to the screw’s performance.
The PV curve defines the safe operating limits of a lead screw. This relationship describes the inverse relationship between contact surface pressure and sliding velocity. As the PV value increases, a lower rotation speed is required for heavier axial loads. Moreover, PV is affected by material and lubrication conditions. Besides, end fixity, which refers to the way the lead screw is supported, also affects its critical speed. Fixed-fixed and free end fixity are both possible.
Lead screws are widely used in industries and everyday appliances. In fact, they are used in robotics, lifting equipment, and industrial machinery. High-precision lead screws are widely used in the fields of engraving, fluid handling, data storage, and rapid prototyping. Moreover, they are also used in 3D printing and rapid prototyping. Lastly, lead screws are used in a wide range of applications, from measuring to assembly.

Fully threaded screw

A fully threaded screw shaft can be found in many applications. Threading is an important feature of screw systems and components. Screws with threaded shafts are often used to fix pieces of machinery together. Having fully threaded screw shafts ensures that screws can be installed without removing the nut or shaft. There are two major types of screw threads: coarse and fine. When it comes to coarse threads, UTS is the most common type, followed by BSP.
In the 1840s, a British engineer named Joseph Whitworth created a design that was widely used for screw threads. This design later became the British Standard Whitworth. This standard was used for screw threads in the United States during the 1840s and 1860s. But as screw threads evolved and international standards were established, this system remained largely unaltered. A new design proposed in 1864 by William Sellers improved upon Whitworth’s screw threads and simplified the pitch and surface finish.
Another reason for using fully threaded screws is their ability to reduce heat. When screw shafts are partially threaded, the bone grows up to the screw shaft and causes the cavity to be too narrow to remove it. Consequently, the screw is not capable of backing out. Therefore, fully threaded screws are the preferred choice for inter-fragmentary compression in children’s fractures. However, surgeons should know the potential complication when removing metalwork.
The full thread depth of a fully threaded screw is the distance at which a male thread can freely thread into the shaft. This dimension is typically one millimeter shy of the total depth of the drilled hole. This provides space for tap lead and chips. The full-thread depth also makes fully threaded screws ideal for axially-loaded connections. It is also suitable for retrofitting applications. For example, fully threaded screws are commonly used to connect two elements.
screwshaft

Ball screw

The basic static load rating of a ball screw is determined by the product of the maximum axial static load and the safety factor “s0”. This factor is determined by past experience in similar applications and should be selected according to the design requirements of the application. The basic static load rating is a good guideline for selecting a ball screw. There are several advantages to using a ball screw for a particular application. The following are some of the most common factors to consider when selecting a ball screw.
The critical speed limit of a ball screw is dependent on several factors. First of all, the critical speed depends on the mass, length and diameter of the shaft. Second, the deflection of the shaft and the type of end bearings determine the critical speed. Finally, the unsupported length is determined by the distance between the ball nut and end screw, which is also the distance between bearings. Generally, a ball screw with a diameter greater than 1.2 mm has a critical speed limit of 200 rpm.
The first step in manufacturing a high-quality ball screw is the choice of the right steel. While the steel used for manufacturing a ball screw has many advantages, its inherent quality is often compromised by microscopic inclusions. These microscopic inclusions may eventually lead to crack propagation, surface fatigue, and other problems. Fortunately, the technology used in steel production has advanced, making it possible to reduce the inclusion size to a minimum. However, higher-quality steels can be expensive. The best material for a ball screw is vacuum-degassed pure alloy steel.
The lead of a ball screw shaft is also an important factor to consider. The lead is the linear distance between the ball and the screw shaft. The lead can increase the amount of space between the balls and the screws. In turn, the lead increases the speed of a screw. If the lead of a ball screw is increased, it may increase its accuracy. If not, the lead of a ball screw can be improved through preloading, lubrication, and better mounting accuracy.

China wholesaler Arrow Zn-BS70 Wear Resistance Twin Screw Extruder Machine Elements Kneading Block   ball screw shaft manufacturerChina wholesaler Arrow Zn-BS70 Wear Resistance Twin Screw Extruder Machine Elements Kneading Block   ball screw shaft manufacturer
editor by CX 2023-11-24

China manufacturer Discharge Auger Discharge Screw Shaft for Refiner shaft collar with grub screw

Product Description

Discharge screw shaft

Tech Information:
 

Component C Cr Mo Si Mn N S P Re The material is high alloy wear-resistant steel, which is the exclusive material developed by our company for many years. It has been tested by the market and its service life is 3 times that of Sweden SS2387-13
Detection result 1.98 26.26 1.22 0.65 0.82 0.23 0.018 0.017 some
Acceptability limit 1.75-2.4 24-28 0.8-1.5 0.35-1 0.5-1.0 0.2-0.35 <0.03 <0.03 some

Main material:

1Cr 13, 4Cr 9 Si2, 0Cr 18 Ni 9, 1Cr 18 Ni 9 Ti, 0Cr 18 Ni 12 Mo 2 Ti,
1Cr17 Ni 14 Mo 2 Cu 2, 3Cr 18 Mn 12 Si 2 N, 3Cr 24 Ni 7 SiNRe , 2Cr 25 Ni 20 Si 2,
4Cr 26 Ni 35 NbW, 4Cr 28 Ni 48 W 5 Si 2, 40CrMo, 42CrMnSiMo, etc.

Advantages:

1.HRC>70
2.Made by super wear-resistant alloy steel which improves production efficiency effectively
3.We have rich technical experience  to produce Plug screw of various sizes

Know us more by the following: 

 

We are Factory who mainly producing Special Steel parts For MDF HDF Plant & Paper machine , which like Segment/Plug Screw/Shaft ribbon feeder/PLUG SCREW CASING/Discharge screw shaft And so on.

Our company has very rich technical experience, More,the quality and service have always been at the leading domestic levelLifespan of our products is longer than others.

 

Our Quality is No1 in China, Plug screw life time is 3 times of original, Since 2011, we have more than 200 customers working with us till now in China , whole china have 500 MDF factories, More than half of them are our partners, Only great quality and service wins that. 

 

For Oversaes’ business, we have professional workers who are experts on the export procedure. Our customers come from Russia, Belarus,France, Spain ,Mexico. Malaysia,Sri Lanka ,Vietnam and so on.

 

So Just feel freely to contact us,It will be our honor to hear from you too

After-sales Service: Full Set
Warranty: 1 Year
Material: Alloy
Customized: Customized
Condition: New
Certification: ISO
Customization:
Available

|

Customized Request

screwshaft

Screw Shaft Types

If you’re looking for a screw shaft, but aren’t sure which type to buy, you’re in luck. In this article, we’ll talk about the different types, including Threaded shank, Round head, and Machined. Once you’ve read it, you’ll know which type to buy. Then, you can decide whether you want a ball screw nut or a threaded shank.

Machined screw shafts

Besides the standard stainless steel shaft, manufacturers also provide a variety of other materials, such as titanium, bronze, and brass. In addition to stainless steel, manufacturers also provide a variety of top-coating options, including zinc, brass, and chromium. Aluminum screws are not particularly durable and are easily affected by weather. Most screw shafts feature self-locking mechanisms. They are especially useful in C-clamps, vises, and screw-top container lids.
For applications where accuracy is vital, a ball screw shaft needs to be annealed. A heat treatment can be performed on the ball screw shaft to ensure that both ends are heated evenly. In this process, the shaft will be more durable, while maintaining its high-precision properties. These screw shafts are a key component in computer-controlled motion-control systems, wire bonding, and other industries that require high-precision and high-quality performance.
Depending on the material used, screw shafts can be made of stainless steel or titanium. High-precision CNC machines and lathes are typically used to manufacture screw shafts. Various shapes and sizes are available, each with a specific application. Whether you need a small or large screw, you can find one to fit your needs. And since each size requires a different material, your choice of material is important as well.
In general, the materials used for machining screw shafts are steel, stainless steel, titanium, brass, bronze, and aluminum. Metals that resist corrosion are also commonly used. Other materials for screw shafts are Teflon, nylon, and nylon. You can also find threaded screw shafts in materials such as porcelain, glass, and ceramic. If you want to use your screws in a unique material, consider purchasing a customized one.

Ball screw nuts

If you have a screw shaft, the last thing you want to worry about is the ball nut slipping off. To prevent this, you can place a temporary stop in the shaft’s grooves to ensure that the ball nut does not slide off. When you remove the stop, you can then install the ball screw nut. But, before you can install the ball screw nut, you have to make sure that you have a good grip on the shaft.
When selecting ball screw nuts, it’s important to consider how much preload you need to apply to avoid excessive backlash. Preloading eliminates this problem by making the ball nut compact. It also prevents backlash, which is lost motion caused by clearance between the ball and nut. Backlash disrupts repeatability and accuracy. This is where spacer preloading comes in. You can insert a spacer between the two ball nuts to transmit the force to the nut. However, you should keep in mind that this method reduces the load capacity of the ball screw.
The critical speed of a screw is the maximum rotating speed before it whips. This critical speed is influenced by several factors, including the diameter of the screw shaft, the number of support elements, and the material. By adjusting these factors, you can reduce the number of components used and the amount of time it takes to assemble the screw shaft. In addition, you can also reduce the number of components and avoid stacking tolerances. However, the critical speed of plastic nuts is limited due to sliding friction.
The ball screw nut has several characteristics that make it unique. Its most prominent feature is the presence of ball bearings. These balls help reduce friction between the screw nut and the shaft. Without ball bearings, the friction would be too high to function properly. Another important characteristic is the groove profile of the nut and ball. These two features ensure that the ball and the nut meet at two points. You’ll be amazed by the results of the work of these ball screw nuts.
screwshaft

Threaded shank

Wood screws are usually not fully threaded because the shank has an unthreaded portion at the top. This shoulder part forces the screw to compress two pieces of wood, which prevents the screw from overheating and compromising the materials strength. As the screw is threaded partially up, it is not as difficult to remove as a fully threaded screw. However, it is important to note that a wood screw will not hold as tightly as one with a fully threaded shank.
In addition to being universal, screw threads can be of different sizes. For example, a M8 screw has a thread pitch of 1.25 mm. To avoid confusion, screw thread pitches are commonly given with a multiplication sign. For example, M8x1 means that the screw is eight mm in diameter but has a thread pitch of one mm per 360-degree rotation. Those who are not familiar with these dimensions may find it confusing.
The OD of the threaded portion of a bolt is generally smaller than the OD of the nut. If the shank is too deep for the nut to fit, the threads may bottom out. This is why it’s important to use a thread-cutting bit with a small thread diameter. You can use a micrometer or caliper to measure the thread diameter. This tool will also allow you to easily identify which screw size fits where and how well.
The metric system is the most widely used. Fasteners with DIN numbers are generally metric in size. This makes them very useful for industrial settings. You can find metric-sized screws anywhere, as long as you buy them from a reputable manufacturer. These fasteners also come with a dog point, which is used for safety wire. If the screw needs to be replaced, the shank can be drilled with a hole for a safety wire or for a dog-point.

Round head

A round head screw is the most common type used for machine screws. Other common types include truss head, flat head, and hexed head. Each has a different profile and are used for different purposes. A round head screw is typically wider than a flat or a hexed head, and has a slightly rounded surface. These screws are useful for projects involving sheet metal or sheet-metal parts. Round heads are usually slightly wider than a hex head screw, and they may also be used as a substitute for washers in certain applications. However, truss heads are not necessary for every project.
A wood screw has a smooth shank that protrudes above the surface of the material it is attaching. A metal screw has a threaded shaft that is fully threaded from head to point, and a fully threaded shaft provides more bite. Two common head styles are round head and pan head. If the task requires the screw to be flush or countersunk, the round head will be the best choice.
Another type is the Reed & Prince screw drive. These are similar to Phillips screws but have a 75-degree V shape. They are commonly used in marine hardware and are also known as BNAE NFL22-070. This type is also used for steel plate hangers. In addition to round head and pan head screws, there are a variety of other screw types. You can even get a head with a slotted head if you know where to look.
Screw diameters are specified according to the ISO 261 or ISO 262 standards. An M8 screw has a diameter of 8.25 mm. The M8 screw has a pitch of 1.25 mm, which is equivalent to one mm per 360 degrees. There are several other standard screw sizes and thread diameters available. You can find them all by consulting the relevant standards. But remember, the metric system is the most popular.
screwshaft

Self-locking mechanism

A self-locking mechanism for a screw shaft is a device that secures the screw to its supporting member in a failure position. The locking mechanism provides a positive connection between the screw shaft and the control surface during normal operation, and locks the screw to its supporting member when the screw fails. Previous attempts to solve this problem have typically used secondary nuts with free play on the screw, which were intentionally designed to jam when loaded. However, such a device can be unreliable, which is why the present invention offers a more robust and reliable locking mechanism.
The self-locking function of a screw depends on several factors, including its pitch angle and the coefficient of friction of the threads. The angle of friction must be less than the tangent of the material pairing to prevent untightening of the screw. Screws with self-locking mechanisms have an efficiency e lower than 50%, which is less than half. Self-locking screws also have the benefit of being less efficient than a standard screw.
Unlike a normal screw, a self-locking screw can be turned in either direction. The nut 22 rotates with the screw shaft, and the member 23 is translated in an axial direction. Regardless of the direction of the rotation of the screw, this axial translation will result in the opposite moment to that input moment. While screw self-locking mechanisms are typically less expensive, they are more reliable and durable.
Another important feature of self-locking screws is that they are not susceptible to independent loosening. The screw cannot rotate without a certain amount of torque. In addition, a self-locking screw shaft must have a small wedge with a smaller half-angle than the arctangent of the static friction. This means that the torque applied by the driver must be greater than the torque needed to overcome the friction.

China manufacturer Discharge Auger Discharge Screw Shaft for Refiner   shaft collar with grub screwChina manufacturer Discharge Auger Discharge Screw Shaft for Refiner   shaft collar with grub screw
editor by CX 2023-11-23

China wholesaler Brand New Domestic Famous Ball Screw Ck6130 CNC Machine Lathe screw conveyor end shaft seal

Product Description

CK6130 CNC Lathe Machine

 

Product Application:

This machine is widely used in processing the electrical appliance, instrumentation, automobile, motorcycle, fastener, bearing,photographic and film machinery, hardware tools, watches, glasses, stationery motors, valves, gas pipe and other high precise and complex components. It is the ideal high efficient equipment in hardware machinery industry.

Product Feature:

1. This series lathe has compact structure, pleasant appearance, large spindle torque, high rigidity, stable and reliable performance, and excellent accuracy retention.

2. Bedstock optimization design is suitable for turning disc and shaft parts. It can process straight line, arc, metric and British threads and multi-head threads. It can also be used for turning disc and shaft parts with complex shape and high precision.

3. The lathe guideway and saddle guideway adopt the hard guideway of special material. After high frequency quenching, they are super hard and wear-resistant, durable and have good processing accuracy.

4. Use domestic famous ball screw and high precision screw bearing.

 

 

ACR machine tool product series:
Slant bed CNC lathes | linear rail flat bed CNC lathes | 1 piece casting bed box way CNC lathes | vertical machining center

 

 

 

 

Specifications Units CK6130
Max.swing over bed mm 300
Max. swing over cross slide mm 100
Max. processing length mm chuck 200/collet 320
X/Z axis travel mm 300/350
Spindle nose   A2-5
Spindle bore mm 48
Bar capacity mm 40
Max.Spindle speed rpm 2500
Chuck size mm 160
Spindle motor kw 4
X/Z axis repeate positionsing accuracy mm ±0.005
X/Z axis feed motor torque N.m X:4 ; Z:4
X/Z axis rapid feed speed mm/min X:8 ; Z:10
Tailstock sleeve diameter mm 52
Tailstock sleeve travel mm 90
Tailstock taper # MT4
Tool post type   4 position electric tool post
Cutting tool shape size mm 16*16
Machine dimension(L*W*H) mm 1600*1100*1650
Net weight Kg 1250

 
Technical parameters:

 

Machine tool structure characteristics and functional requirements

1.1 This series of machine tools is the company’s main export mature product. The whole machine has a compact structure, beautiful appearance, large spindle torque, high rigidity, stable and reliable performance, and excellent accuracy retention.

1.2 Optimized design of the headstock, suitable for turning of disc and shaft parts. It can process straight, arc, metric and inch threads, and multi-threaded. It is suitable for turning discs and shafts with complex shapes and high precision requirements. Parts Processing.
1.3 Both the machine tool CZPT rail and the sliding saddle CZPT rail adopt hard CZPT rails made of special materials. After high frequency quenching, they are super hard and wear-resistant, durable, and have good machining accuracy retention.
1.4 CNC system adopts FANUC system, domestic famous ball screw and high-precision screw bearing.
1.5 The spindle adopts high-precision spindle bearing set and has been precisely assembled and dynamically balanced to ensure that the spindle has high precision, low noise and strong rigidity.
1.6 Each lubrication point adopts a forced automatic lubrication device for fixed-point and quantitative lubrication of the lead screw and CZPT rail. When there is an abnormal state or the amount of oil is insufficient, a warning signal is automatically generated.
1.7 Standard configuration adopts domestically made three-jaw self-centering manual chuck.
1.8 The CZPT rail is equipped with a scraping device to prevent the CZPT rail from being corroded by iron filings and coolant, and to facilitate the cleaning of the iron filings.

Main technical parameters, configuration table

Project Unit CK6130
Maximum turning diameter of bed mm Φ300
X-direction rail span mm 160
Z-direction rail span mm 230
Maximum turning diameter of slide mm Φ100
Center distance mm 350
Maximum turning length mm 230
Center height From bed mm 150
Off the ground mm 1065
Spindle hole diameter mm Φ48
Bar diameter mm Φ45
With hollow chuck rod through hole mm Φ40
Spindle end type   A2-5
Chuck mm 160
Spindle speed limit rpm 2500
Diameter of tailstock sleeve mm Φ52
Taper of inner hole of tailstock sleeve No MT4#
Tailstock sleeve stroke mm 80
Tailstock   Manual
Electric tool rest set 4
Knife square size mm 20×20
Lead screw X mm FDC2506-P3
Z mm FDC3210-P3
X/Z direction rapid traverse speed m/min 6/10
X stroke mm 280
Minimum setting unit mm 0.001
main motor power KW 4
Machine Net Weight Kg 1700
Dimensions (length×width×height) mm 2200×1160×1620

 

Technical parameter Unit CK0640
Maximum turning diameter of bed  mm Φ230
The maximum turning diameter of the pallet mm Φ100
Z/X maximum travel  mm 260/220
Spindle through hole diameter  mm Φ48
Through hole diameter of draw tube  mm Φ41
Workpiece clamping method   Pneumatic clamping
Z/X axis servo motor N.M 4/4
Z/X axis rapid traverse speed  m/min 6/7
Spindle maximum speed  rpm 2800
Tool holder size mm 20*20
Tool holder repeatability mm ≤0.005
Frequency converter kw 5.5
main motor power kw 4
Tool holder method   row of knives
Machine weight kg 1500
Machine size  mm 1610*1180*1600

 Machine accuracy

Test items Standard tolerance(mm)
Periodic axial movement of the spindle 0.005
Radial runout of the positioning cone of the spindle chuck 0.005
Position accuracy ±0.005
Diameter consistency 0.01/150
Flatness 0.571/φ300
Thread pitch product error 0.571/100
Surface roughness Ra1.6μm

Main configuration list

Name Specification model Quantity
Control System FANUC 1
Spindle structure Stepless speed regulation 1
Screw bearing Flange bearing 1
Spindle motor 4 KW 1
Ball screw 2506/3210 1
Tool holder Four-station electric tool post 1
Automatic lubrication device RBCLB-2BZK 1
Three-jaw manual chuck K11160 1
Cooling pump P=90W 1

Packing:

 

 

 

 

 

Shipments:

 

 

 

 

 

Company introduction:

 

 

 

ZheJiang ACR Machine Tool Co., Ltd. is an enterprise integrating product design, research and development, manufacturing and sales. Mainly produce and operate CNC lathes, CNC milling machines, vertical machining centers, horizontal machining centers, gantry machining centers, ordinary lathes, vertical drilling machines, radial drilling machines, ordinary milling machines, metal band saws, planers, surface grinders, etc. More than 50 series of products.
ACR is committed to the innovation of machining technology and solutions, and has become a domestic high-quality supplier of CNC lathes, vertical machining centers, horizontal machining centers, drilling centers, CNC gantry milling and boring machines and other products for just a few years. It was rated as “national high-tech enterprise”, “ZheJiang science and technology small and medium-sized enterprise”. The company has passed the “ISO90001 international quality system”, “ISO14001 environmental quality system certification”, the enterprise credit rating is “AAA”.
ACR has introduced and implemented the CE system and the on-site 5S management mode for a long time. We do a meticulous job in each link,and strictly manage each production process.We have won many national and provincial awards. ACR brand CNC lathes, machining centers, CNC gantry milling and boring machines, drilling centers, etc. have been awarded the titles of “national machinery industry high-quality brand products” and ZheJiang Province famous brand products. Adhering to the concept of “creation and innovation, common prosperity and sharing”, ACR has always pursued the goal of first-class enterprise, first-class product, first-class service and first-class benefit”, strive to “create greater value” for our customers, and strive to build a CNC machine tool industry chain group company.

FAQ:

1:How can I choose the most suitable machines ?
A: Please tell me your specifications ,we can choose the best model for you , or you can choose the exact model .
You can also send us the products drawing ,we will choose the most suitable machines for you .

2: What’s your main products of your company?
A: We specialized in all kinds of machines ,such as CNC Lathe Machine ,CNC Milling Machine ,Vertical Machining Center ,Lathe
Machines ,Drilling Machine ,Radial Drilling Machine ,Sawing Machine ,Shaper machine and so on .

3: Where is our factory located? How can I visit there?
A : Our factory is located in HangZhou City ,ZheJiang Province,277500 China. You are warmly welcomed to visit us.

4. What is your trade terms?
A : FOB, CFR and CIF all acceptable.

5: What’s the Payment Terms ?
A : T/T ,30% initial payment when order ,70% balance payment before shipment ;
Irrevocable LC at sight .

5: What’s the MOQ?
A: 1 set .(Only some low cost machines will be more than 1 set )

After-sales Service: Three Packs of Service
Warranty: 1year
Application: Metal
Process Usage: Metal-Cutting CNC Machine Tools, CNC Non-Conventional Machine Tools, Metal-Forming CNC Machine Tools
Movement Method: Contour Control
Control Method: Closed-Loop Control
Customization:
Available

|

Customized Request

screwshaft

What Are Screw Shaft Threads?

A screw shaft is a threaded part used to fasten other components. The threads on a screw shaft are often described by their Coefficient of Friction, which describes how much friction is present between the mating surfaces. This article discusses these characteristics as well as the Material and Helix angle. You’ll have a better understanding of your screw shaft’s threads after reading this article. Here are some examples. Once you understand these details, you’ll be able to select the best screw nut for your needs.

Coefficient of friction between the mating surfaces of a nut and a screw shaft

There are two types of friction coefficients. Dynamic friction and static friction. The latter refers to the amount of friction a nut has to resist an opposing motion. In addition to the material strength, a higher coefficient of friction can cause stick-slip. This can lead to intermittent running behavior and loud squeaking. Stick-slip may lead to a malfunctioning plain bearing. Rough shafts can be used to improve this condition.
The two types of friction coefficients are related to the applied force. When applying force, the applied force must equal the nut’s pitch diameter. When the screw shaft is tightened, the force may be removed. In the case of a loosening clamp, the applied force is smaller than the bolt’s pitch diameter. Therefore, the higher the property class of the bolt, the lower the coefficient of friction.
In most cases, the screwface coefficient of friction is lower than the nut face. This is because of zinc plating on the joint surface. Moreover, power screws are commonly used in the aerospace industry. Whether or not they are power screws, they are typically made of carbon steel, alloy steel, or stainless steel. They are often used in conjunction with bronze or plastic nuts, which are preferred in higher-duty applications. These screws often require no holding brakes and are extremely easy to use in many applications.
The coefficient of friction between the mating surfaces of t-screws is highly dependent on the material of the screw and the nut. For example, screws with internal lubricated plastic nuts use bearing-grade bronze nuts. These nuts are usually used on carbon steel screws, but can be used with stainless steel screws. In addition to this, they are easy to clean.

Helix angle

In most applications, the helix angle of a screw shaft is an important factor for torque calculation. There are two types of helix angle: right and left hand. The right hand screw is usually smaller than the left hand one. The left hand screw is larger than the right hand screw. However, there are some exceptions to the rule. A left hand screw may have a greater helix angle than a right hand screw.
A screw’s helix angle is the angle formed by the helix and the axial line. Although the helix angle is not usually changed, it can have a significant effect on the processing of the screw and the amount of material conveyed. These changes are more common in two stage and special mixing screws, and metering screws. These measurements are crucial for determining the helix angle. In most cases, the lead angle is the correct angle when the screw shaft has the right helix angle.
High helix screws have large leads, sometimes up to six times the screw diameter. These screws reduce the screw diameter, mass, and inertia, allowing for higher speed and precision. High helix screws are also low-rotation, so they minimize vibrations and audible noises. But the right helix angle is important in any application. You must carefully choose the right type of screw for the job at hand.
If you choose a screw gear that has a helix angle other than parallel, you should select a thrust bearing with a correspondingly large center distance. In the case of a screw gear, a 45-degree helix angle is most common. A helix angle greater than zero degrees is also acceptable. Mixing up helix angles is beneficial because it allows for a variety of center distances and unique applications.
screwshaft

Thread angle

The thread angle of a screw shaft is measured from the base of the head of the screw to the top of the screw’s thread. In America, the standard screw thread angle is 60 degrees. The standard thread angle was not widely adopted until the early twentieth century. A committee was established by the Franklin Institute in 1864 to study screw threads. The committee recommended the Sellers thread, which was modified into the United States Standard Thread. The standardized thread was adopted by the United States Navy in 1868 and was recommended for construction by the Master Car Builders’ Association in 1871.
Generally speaking, the major diameter of a screw’s threads is the outside diameter. The major diameter of a nut is not directly measured, but can be determined with go/no-go gauges. It is necessary to understand the major and minor diameters in relation to each other in order to determine a screw’s thread angle. Once this is known, the next step is to determine how much of a pitch is necessary to ensure a screw’s proper function.
Helix angle and thread angle are two different types of angles that affect screw efficiency. For a lead screw, the helix angle is the angle between the helix of the thread and the line perpendicular to the axis of rotation. A lead screw has a greater helix angle than a helical one, but has higher frictional losses. A high-quality lead screw requires a higher torque to rotate. Thread angle and lead angle are complementary angles, but each screw has its own specific advantages.
Screw pitch and TPI have little to do with tolerances, craftsmanship, quality, or cost, but rather the size of a screw’s thread relative to its diameter. Compared to a standard screw, the fine and coarse threads are easier to tighten. The coarser thread is deeper, which results in lower torques. If a screw fails because of torsional shear, it is likely to be a result of a small minor diameter.

Material

Screws have a variety of different sizes, shapes, and materials. They are typically machined on CNC machines and lathes. Each type is used for different purposes. The size and material of a screw shaft are influenced by how it will be used. The following sections give an overview of the main types of screw shafts. Each one is designed to perform a specific function. If you have questions about a specific type, contact your local machine shop.
Lead screws are cheaper than ball screws and are used in light-duty, intermittent applications. Lead screws, however, have poor efficiency and are not recommended for continuous power transmission. But, they are effective in vertical applications and are more compact. Lead screws are typically used as a kinematic pair with a ball screw. Some types of lead screws also have self-locking properties. Because they have a low coefficient of friction, they have a compact design and very few parts.
Screws are made of a variety of metals and alloys. Steel is an economical and durable material, but there are also alloy steel and stainless steel types. Bronze nuts are the most common and are often used in higher-duty applications. Plastic nuts provide low-friction, which helps reduce the drive torques. Stainless steel screws are also used in high-performance applications, and may be made of titanium. The materials used to create screw shafts vary, but they all have their specific functions.
Screws are used in a wide range of applications, from industrial and consumer products to transportation equipment. They are used in many different industries, and the materials they’re made of can determine their life. The life of a screw depends on the load that it bears, the design of its internal structure, lubrication, and machining processes. When choosing screw assemblies, look for a screw made from the highest quality steels possible. Usually, the materials are very clean, so they’re a great choice for a screw. However, the presence of imperfections may cause a normal fatigue failure.
screwshaft

Self-locking features

Screws are known to be self-locking by nature. The mechanism for this feature is based on several factors, such as the pitch angle of the threads, material pairing, lubrication, and heating. This feature is only possible if the shaft is subjected to conditions that are not likely to cause the threads to loosen on their own. The self-locking ability of a screw depends on several factors, including the pitch angle of the thread flank and the coefficient of sliding friction between the two materials.
One of the most common uses of screws is in a screw top container lid, corkscrew, threaded pipe joint, vise, C-clamp, and screw jack. Other applications of screw shafts include transferring power, but these are often intermittent and low-power operations. Screws are also used to move material in Archimedes’ screw, auger earth drill, screw conveyor, and micrometer.
A common self-locking feature for a screw is the presence of a lead screw. A screw with a low PV value is safe to operate, but a screw with high PV will need a lower rotation speed. Another example is a self-locking screw that does not require lubrication. The PV value is also dependent on the material of the screw’s construction, as well as its lubrication conditions. Finally, a screw’s end fixity – the way the screw is supported – affects the performance and efficiency of a screw.
Lead screws are less expensive and easier to manufacture. They are a good choice for light-weight and intermittent applications. These screws also have self-locking capabilities. They can be self-tightened and require less torque for driving than other types. The advantage of lead screws is their small size and minimal number of parts. They are highly efficient in vertical and intermittent applications. They are not as accurate as lead screws and often have backlash, which is caused by insufficient threads.

China wholesaler Brand New Domestic Famous Ball Screw Ck6130 CNC Machine Lathe   screw conveyor end shaft sealChina wholesaler Brand New Domestic Famous Ball Screw Ck6130 CNC Machine Lathe   screw conveyor end shaft seal
editor by CX 2023-11-22

China Good quality Beer Spent Grain Dewatering Screw Press with Cheap Price CZPT shaft seal

Product Description

 

Spent CZPT Screw Dewatering Machine

Product Description

The beer lees screw extrusion dehydrator has strong dehydration capacity, and the high-humidity beer lees with 90% water content reach the 60% water standard after dehydration, which greatly reduces the burden of the beer lees dryer, promotes the drying and wetness of the lees, and the energy consumption of the dryer Significantly reduced. The beer lees screw dehydrator is divided into a single-shaft screw extrusion dehydrator and a double-shaft screw extrusion dehydrator. HangZhou CZPT Machinery customizes production and supply to meet the different output needs of customers.

The beer lees screw extrusion dehydrator is customized and supplied by the manufacturer. The specifications and models are not set online to meet the production needs of customers. Before sales, customers can test the machine with materials to verify the dehydration effect. At the same time, the factory tests the machine, and will not ship if it fails to meet the requirements, and install and debug it for customers free of charge.
The following is the comparison before and after the dehydration of beer lees:
The brewer’s CZPT dehydrator is an indispensable link in the brewer’s CZPT feed system. Due to the high moisture content of the brewer’s grain, a large amount of heat energy will be consumed in the drying process. A part of the free water in the brewer’s CZPT will be removed in advance by the brewer’s CZPT dehydrator to reduce the drying time. The energy consumption in the drying process greatly reduces the burden on the brewer’s CZPT dryer, and the output is greatly increased. At present, this set of equipment has been put into use in many beer companies and feed processing companies, and has created considerable economic benefits.
Brewer’s CZPT dehydrator-related products

Our Advantages

1. The purpose of press separation is realized by the effective coordination of screw and sieve, the water goes well;
2. Successfully solved the problem of screen blockage. The core technology is the cooperation between the screw and the screen to realize the self-cleaning function of the screen, and the interaction between the screw and the special device to agitate the material, the first is to avoid the material holding shaft, the second is to realize the material particles rub off the plug of the screen in the process of screw advancing;
3. Adopt a pneumatic device with a very low maintenance cost, after setting a certain pressing pressure, the device will automatically control the pressing force of materials. especially suitable for assembly line operation, avoid the disadvantages of the common press need to be centralized treatment;
4. The special Angle design of the feeding box can effectively prevent the phenomenon of “bridging” of some sticky materials;
5. press screen is all 2 half screen, can be easily separated and thoroughly cleaned;
6. beautiful shape, simple structure, low-speed transmission, high torque output, low noise, no vibration, at the same time, the driven parts are few, the wearing parts needed to be replaced are also few, low maintenance costs.

Working Principle

The spent CZPT dewatering machine is designed according to the superposition compression principle, and mainly achieves the purpose of material water separation by the cooperation of the feeding box, the screw shaft, the screen mesh, and the tail cone. The material to be treated is uniformly conveyed to the feed bin of the screw extrusion dewatering machine by a tool such as a screw conveyor, and is filtered by the spiral blade and filtered by the screen, and the water or juice flows through the screen to the water tray under the machine to collect. After being taken up by the pipeline, the dehydrated finished material is output through the conveyor belt.
(If you have any questions, I will answer you based on your raw materials and capacity.  )

Applications

Separate liquid and solid industrial waste like vinegar grains, spent grains, white wine grains, herb waste, palm waste, food waste, grass, etc.

Product Parameters

Model JTLXT250 JTLXT300 JTLXT350 JTLXT400 JTLXT450 JTLXT500
Power(kW) 7.5 11 15 18.5 22 30
Speed range (r/min) 125-1250
Weight(t) 0.75 1.1 1.5 2.0 3.5 5.0
Processing capacity(t/d) 40 70 90 120 160 200
Floor area(m²) 2.1 2.1 2.1 5.04 5.04 5.04
Note: The price above is just for reference, please feel free to contact us if you want to know more about different models or production lines. We can offer free customized proposals.

Service Items

Pre-sale
1. According to your needs, select the right model for you.
2. According to your special requirements, design customized solutions, and manufacture customized products for you.
3. Welcome to your visit.
Sale
1. Sign the contract, pay a deposit, we arrange the production.
2. Product acceptance.
3. Help you formulate a construction scheme.
After-sale
1. Assign engineer service for you on-site freely.
2. Install and adjust the device, train how to operate.
3. After installation, leaving 1-2 technical staff to help you on-site production, until achieving customer satisfaction.

Company Profile

  HangZhou CZPT Machinery Technology Co. Ltd. Was founded in 2003, we are a professional manufacturer of dewatering machines, drying machines, etc. Our mission is to provide the best service to our customers and concentrate on building a long-term partnership with our customers which leads us to create a win-win situation.

  At present, CZPT not only has a huge customer resource system and considerable market share in the country but also in Russia, Greece, Italy, Israel, Nigeria, Morocco, Congo, Côte d’Ivoire, Madagascar, Australia, India, Vietnam, Laos, Indonesia, Malaysia, Sri Lanka, Chile, and other countries have established a case of equipment and successfully put them into production, to achieve the quality and technology of dehydrator and dryer products and international standards.

Successful Cases

If you are interested in our equipment, or if you want to know more details, please feel free to contact us. We will give you a reply within 24 hours!

 

 

Structure: Screw
Filter Material: Stainless Steel
Pressure: Mechanical Pressure
Capacity (T/D): 40-200
Power(Kw): 7.5-30
Speed Range Range(R/Min): 125-1250
Customization:
Available

|

Customized Request

screwshaft

Screws and Screw Shafts

A screw is a mechanical device that holds objects together. Screws are usually forged or machined. They are also used in screw jacks and press-fitted vises. Their self-locking properties make them a popular choice in many different industries. Here are some of the benefits of screws and how they work. Also read about their self-locking properties. The following information will help you choose the right screw for your application.

Machined screw shaft

A machined screw shaft can be made of various materials, depending on the application. Screw shafts can be made from stainless steel, brass, bronze, titanium, or iron. Most manufacturers use high-precision CNC machines or lathes to manufacture these products. These products come in many sizes and shapes, and they have varying applications. Different materials are used for different sizes and shapes. Here are some examples of what you can use these screws for:
Screws are widely used in many applications. One of the most common uses is in holding objects together. This type of fastener is used in screw jacks, vises, and screw presses. The thread pitch of a screw can vary. Generally, a smaller pitch results in greater mechanical advantage. Hence, a machined screw shaft should be sized appropriately. This ensures that your product will last for a long time.
A machined screw shaft should be compatible with various threading systems. In general, the ASME system is used for threaded parts. The threaded hole occupies most of the shaft. The thread of the bolt occupy either part of the shaft, or the entire one. There are also alternatives to bolts, including riveting, rolling pins, and pinned shafts. These alternatives are not widely used today, but they are useful for certain niche applications.
If you are using a ball screw, you can choose to anneal the screw shaft. To anneal the screw shaft, use a water-soaked rag as a heat barrier. You can choose from two different options, depending on your application. One option is to cover the screw shaft with a dust-proof enclosure. Alternatively, you can install a protective heat barrier over the screw shaft. You can also choose to cover the screw shaft with a dust-proof machine.
If you need a smaller size, you can choose a smaller screw. It may be smaller than a quarter of an inch, but it may still be compatible with another part. The smaller ones, however, will often have a corresponding mating part. These parts are typically denominated by their ANSI numerical size designation, which does not indicate threads-per-inch. There is an industry standard for screw sizes that is a little easier to understand.

Ball screw nut

When choosing a Ball screw nut for a screw shaft, it is important to consider the critical speed of the machine. This value excites the natural frequency of a screw and determines how fast it can be turned. In other words, it varies with the screw diameter and unsupported length. It also depends on the screw shaft’s diameter and end fixity. Depending on the application, the nut can be run at a maximum speed of about 80% of its theoretical critical speed.
The inner return of a ball nut is a cross-over deflector that forces the balls to climb over the crest of the screw. In one revolution of the screw, a ball will cross over the nut crest to return to the screw. Similarly, the outer circuit is a circular shape. Both flanges have one contact point on the ball shaft, and the nut is connected to the screw shaft by a screw.
The accuracy of ball screws depends on several factors, including the manufacturing precision of the ball grooves, the compactness of the assembly, and the set-up precision of the nut. Depending on the application, the lead accuracy of a ball screw nut may vary significantly. To improve lead accuracy, preloading, and lubrication are important. Ewellix ball screw assembly specialists can help you determine the best option for your application.
A ball screw nut should be preloaded prior to installation in order to achieve the expected service life. The smallest amount of preload required can reduce a ball screw’s calculated life by as much as 90 percent. Using a lubricant of a standard grade is recommended. Some lubricants contain additives. Using grease or oil in place of oil can prolong the life of the screw.
A ball screw nut is a type of threaded nut that is used in a number of different applications. It works similar to a ball bearing in that it contains hardened steel balls that move along a series of inclined races. When choosing a ball screw nut, engineers should consider the following factors: speed, life span, mounting, and lubrication. In addition, there are other considerations, such as the environment in which the screw is used.
screwshaft

Self-locking property of screw shaft

A self-locking screw is one that is capable of rotating without the use of a lock washer or bolt. This property is dependent on a number of factors, but one of them is the pitch angle of the thread. A screw with a small pitch angle is less likely to self-lock, while a large pitch angle is more likely to spontaneously rotate. The limiting angle of a self-locking thread can be calculated by calculating the torque Mkdw at which the screw is first released.
The pitch angle of the screw’s threads and its coefficient of friction determine the self-locking function of the screw. Other factors that affect its self-locking function include environmental conditions, high or low temperature, and vibration. Self-locking screws are often used in single-line applications and are limited by the size of their pitch. Therefore, the self-locking property of the screw shaft depends on the specific application.
The self-locking feature of a screw is an important factor. If a screw is not in a state of motion, it can be a dangerous or unusable machine. The self-locking property of a screw is critical in many applications, from corkscrews to threaded pipe joints. Screws are also used as power linkages, although their use is rarely necessary for high-power operations. In the archimedes’ screw, for example, the blades of the screw rotate around an axis. A screw conveyor uses a rotating helical chamber to move materials. A micrometer uses a precision-calibrated screw to measure length.
Self-locking screws are commonly used in lead screw technology. Their pitch and coefficient of friction are important factors in determining the self-locking property of screws. This property is advantageous in many applications because it eliminates the need for a costly brake. Its self-locking property means that the screw will be secure without requiring a special kind of force or torque. There are many other factors that contribute to the self-locking property of a screw, but this is the most common factor.
Screws with right-hand threads have threads that angle up to the right. The opposite is true for left-hand screws. While turning a screw counter-clockwise will loosen it, a right-handed person will use a right-handed thumb-up to turn it. Similarly, a left-handed person will use their thumb to turn a screw counter-clockwise. And vice versa.
screwshaft

Materials used to manufacture screw shaft

Many materials are commonly used to manufacture screw shafts. The most common are steel, stainless steel, brass, bronze, and titanium. These materials have advantages and disadvantages that make them good candidates for screw production. Some screw types are also made of copper to fight corrosion and ensure durability over time. Other materials include nylon, Teflon, and aluminum. Brass screws are lightweight and have aesthetic appeal. The choice of material for a screw shaft depends on the use it will be made for.
Shafts are typically produced using three steps. Screws are manufactured from large coils, wire, or round bar stock. After these are produced, the blanks are cut to the appropriate length and cold headed. This cold working process pressudes features into the screw head. More complicated screw shapes may require two heading processes to achieve the desired shape. The process is very precise and accurate, so it is an ideal choice for screw manufacturing.
The type of material used to manufacture a screw shaft is crucial for the function it will serve. The type of material chosen will depend on where the screw is being used. If the screw is for an indoor project, you can opt for a cheaper, low-tech screw. But if the screw is for an outdoor project, you’ll need to use a specific type of screw. This is because outdoor screws will be exposed to humidity and temperature changes. Some screws may even be coated with a protective coating to protect them from the elements.
Screws can also be self-threading and self-tapping. The self-threading or self-tapping screw creates a complementary helix within the material. Other screws are made with a thread which cuts into the material it fastens. Other types of screws create a helical groove on softer material to provide compression. The most common uses of a screw include holding two components together.
There are many types of bolts available. Some are more expensive than others, but they are generally more resistant to corrosion. They can also be made from stainless steel or aluminum. But they require high-strength materials. If you’re wondering what screws are, consider this article. There are tons of options available for screw shaft manufacturing. You’ll be surprised how versatile they can be! The choice is yours, and you can be confident that you’ll find the screw shaft that will best fit your application.

China Good quality Beer Spent Grain Dewatering Screw Press with Cheap Price   CZPT shaft sealChina Good quality Beer Spent Grain Dewatering Screw Press with Cheap Price   CZPT shaft seal
editor by CX 2023-11-21

China Professional Single Double Stage Industrial AC DC Liquid Water Cooling Ring Piston Rotary Vane Dry Screw Scroll Roots Air Vakuum Vacuum Pump Replace of Kinney Klrc Kt Kmbd sector shaft adjustment screw

Product Description

Single Double Stage Industrial AC DC Liquid Water Cooling Ring Piston Rotary Vane Dry Screw Scroll Roots Air Vakuum Vacuum Pump Replace of Kinney KLRC KT KMBD

Product Description

KT Single-Stage Rotary Piston Vacuum Pump

 

 

 

• High pumping capacity at high and low pressures
Three-cylinder piston design: dynamic balance, almost no vibration
• No metal contact between pump pistons
The cylinder clearance is full of oil
• Quiet operation

Application: 

 Heat Treating, Coating, Transformer Drying, Metallurgy, Vacuum packaging, Vacuum furnace, Vacuum coating, Liquid Gas Storage, Brake Fluid Filling, Silicon Crystal Growing, Evacuation

 

Model CFM m3/h HP/kW
KT-150 150/244 7.5/5.5
KT-300 300/503 15/11

 

KLRC Two-stage water-ring vacuum pump

 
Drop down to 4 Torr (5.3 mbar a)
• Low-pressure performance limited by steam. The pressure of sealing liquid: water, oil, or process liquid
• Provide complete engineering system solutions: Instruments, controls, piping, and valves
• Independent liquid recovery and recycling
• The central anchor rod is allowed to enter. Pump end without complete disassembly
• KLRC75 provides dual mechanical seals
Through KLRC525, to meet the requirements of the API pipeline plan.

Applications:
Chemical & Pharmaceutical Processing, Vapor Recovery, Deaeration, Extruders, Crystallizers, Central Vacuum Systems

Model CFM / m3/hr CFM / m3/hr
KLRC-125 71/99 5/3.7
KLRC-200 170/244 15/11
KLRC-300 305/432 25/18.5
KLRC-525 550/779 50/37
Roots pump  
• High volume of gas at high vacuum (50 Torr to micrometer range)
• Can be used with all types of vacuum pumps
• Designed to operate in a blank state of 82 dB (A) or less open ground; except for motor and background noise
• Heavy-duty drive shafts for direct coupling or Belt Drive Applications
• Standard building material: cast iron end plate, the fit of housing and port with nodular cast iron rotor and shaft
• Special materials provided
» Stainless steel, carbon steel, ductile iron, Bi Protec
• Special tests available
» Hydrostatic test to 150 PSIG (10.35 bar g), seal leak test, noise test

Application: 
Supercharging ( Vacuum Systems), Vacuum Drying, Dehydration, Packaging, Distillation  Vacuum Furnace

 

Single Stage Rotary Vane Pump  
• Vacuum packaging and food processing technology
Thermoforming, blister, air compression, foam forming
• Vacuum Adsorption, sling
• Vacuum degassing, drying, crystallization, impregnationprecooling
• Vacuum pressing, laminating, setting
• Vacuum coating and industrial CZPT as the front pump and pre-pump two

 

Two Stage Rotary Vane Pump  
• Electronics, semiconductor, and coating industries Vacuum oven, sapphire furnace, polycrystalline furnace, single crystal furnace, vacuum dewatering furnace, vacuum sintering furnace, etc.; Optical coating, ion plating, sputtering equipment; Plasma cleaning; As the front auxiliary pump of Roots pump, diffusion pump, molecular pump, etc.
• Various analytical instruments Spectrometer, spectrometer, physical and chemical analyzer, leak detector, glove box, etc.
• Medical Industry
Plasma sterilizer, vacuum CZPT drying, etc.
• Refrigeration industry
Automatic evacuation lines of air conditioners, refrigerators, and compressors, refrigerant injection machines, helium leak detection series, etc

Comparison of replacement models

Our Model

Kinney’s Model

 

Our Model

Kinney’s Model

TWO STAGE WATER-RING VACUUM PUMP

SINGLE STAGE ROTARY PISTON VACUUM PUMP

LP40

KLRC100

PP70

KT150

LP55

KLRC125

PP150

KT300

LP75

KLRC200

PP70B

KT150(here are differenets from shape and oil channel design)

LP115

KLRC300

ROOTS PUMP

LP200

KLRC525

VP200

KMBD540

 

 

VP600

KMBD2000

Company Profile

The main products are water ring vacuum pumps (including 2BV series, 2BE1 series, 2BE3 series, 2SK series, SK series), rotary vane vacuum pumps (2X series, XD series), roots vacuum pumps, screw vacuum pumps, reciprocating vacuum pumps, vacuum pump stations, vacuum units and accessories, vacuum complete equipment, etc. According to different types of vacuum pumps and different production process requirements of customers, there are also many kinds of materials, mainly including cast iron, stainless steel 304, stainless steel 316, stainless steel 316L, etc. The material quality of non proud products is guaranteed. If the product has quality problems, it will be replaced within 3 months and guaranteed for 1 year. 1. Special materials, specifications and requirements can be customized through negotiation between the supplier and the demander. 2. Provide design, processing, sales and maintenance of vacuum units and complete vacuum equipment. 3. The price will fluctuate due to different product requirements, specifications and materials. The above prices are only for reference. We will provide a suitable design scheme and quotation for your vacuum system according to your specific requirements,

After-sales Service: 5 Years
Warranty: 5 Years
Oil or Not: Optional
Structure: Rotary Vacuum Pump
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: Vacuum
Samples:
US$ 999/Piece
1 Piece(Min.Order)

|
Request Sample

screwshaft

Screw Sizes and Their Uses

Screws have different sizes and features. This article will discuss screw sizes and their uses. There are two main types: right-handed and left-handed screw shafts. Each screw features a point that drills into the object. Flat tipped screws, on the other hand, need a pre-drilled hole. These screw sizes are determined by the major and minor diameters. To determine which size of screw you need, measure the diameter of the hole and the screw bolt’s thread depth.

The major diameter of a screw shaft

The major diameter of a screw shaft is the distance from the outer edge of the thread on one side to the tip of the other. The minor diameter is the inner smooth part of the screw shaft. The major diameter of a screw is typically between two and sixteen inches. A screw with a pointy tip has a smaller major diameter than one without. In addition, a screw with a larger major diameter will have a wider head and drive.
The thread of a screw is usually characterized by its pitch and angle of engagement. The pitch is the angle formed by the helix of a thread, while the crest forms the surface of the thread corresponding to the major diameter of the screw. The pitch angle is the angle between the gear axis and the pitch surface. Screws without self-locking threads have multiple starts, or helical threads.
The pitch is a crucial component of a screw’s threading system. Pitch is the distance from a given thread point to the corresponding point of the next thread on the same shaft. The pitch line is one element of pitch diameter. The pitch line, or lead, is a crucial dimension for the thread of a screw, as it controls the amount of thread that will advance during a single turn.

The pitch diameter of a screw shaft

When choosing the appropriate screw, it is important to know its pitch diameter and pitch line. The pitch line designates the distance between adjacent thread sides. The pitch diameter is also known as the mean area of the screw shaft. Both of these dimensions are important when choosing the correct screw. A screw with a pitch of 1/8 will have a mechanical advantage of 6.3. For more information, consult an application engineer at Roton.
The pitch diameter of a screw shaft is measured as the distance between the crest and the root of the thread. Threads that are too long or too short will not fit together in an assembly. To measure pitch, use a measuring tool with a metric scale. If the pitch is too small, it will cause the screw to loosen or get stuck. Increasing the pitch will prevent this problem. As a result, screw diameter is critical.
The pitch diameter of a screw shaft is measured from the crest of one thread to the corresponding point on the next thread. Measurement is made from one thread to another, which is then measured using the pitch. Alternatively, the pitch diameter can be approximated by averaging the major and minor diameters. In most cases, the pitch diameter of a screw shaft is equal to the difference between the two.

The thread depth of a screw shaft

Often referred to as the major diameter, the thread depth is the outermost diameter of the screw. To measure the thread depth of a screw, use a steel rule, micrometer, or caliper. In general, the first number in the thread designation indicates the major diameter of the thread. If a section of the screw is worn, the thread depth will be smaller, and vice versa. Therefore, it is good practice to measure the section of the screw that receives the least amount of use.
In screw manufacturing, the thread depth is measured from the crest of the screw to the root. The pitch diameter is halfway between the major and minor diameters. The lead diameter represents the amount of linear distance traveled in one revolution. As the lead increases, the load capacity decreases. This measurement is primarily used in the construction of screws. However, it should not be used for precision machines. The thread depth of a screw shaft is essential for achieving accurate screw installation.
To measure the thread depth of a screw shaft, the manufacturer must first determine how much material the thread is exposed to. If the thread is exposed to side loads, it can cause the nut to wedge. Because the nut will be side loaded, its thread flanks will contact the nut. The less clearance between the nut and the screw, the lower the clearance between the nut and the screw. However, if the thread is centralized, there is no risk of the nut wedgeing.
screwshaft

The lead of a screw shaft

Pitch and lead are two measurements of a screw’s linear distance per turn. They’re often used interchangeably, but their definitions are not the same. The difference between them lies in the axial distance between adjacent threads. For single-start screws, the pitch is equal to the lead, while the lead of a multi-start screw is greater than the pitch. This difference is often referred to as backlash.
There are two ways to calculate the pitch and lead of a screw. For single-start screws, the lead and pitch are equal. Multiple-start screws, on the other hand, have multiple starts. The pitch of a multiple-start screw is the same as its lead, but with two or more threads running the length of the screw shaft. A square-thread screw is a better choice in applications requiring high load-bearing capacity and minimal friction losses.
The PV curve defines the safe operating limits of lead screw assemblies. It describes the inverse relationship between contact surface pressure and sliding velocity. As the load increases, the lead screw assembly must slow down in order to prevent irreversible damage from frictional heat. Furthermore, a lead screw assembly with a polymer nut must reduce rpm as the load increases. The more speed, the lower the load capacity. But, the PV factor must be below the maximum allowed value of the material used to make the screw shaft.

The thread angle of a screw shaft

The angle between the axes of a thread and the helix of a thread is called the thread angle. A unified thread has a 60-degree angle in all directions. Screws can have either a tapped hole or a captive screw. The screw pitch is measured in millimeters (mm) and is usually equal to the screw major diameter. In most cases, the thread angle will be equal to 60-degrees.
Screws with different angles have various degrees of thread. Originally, this was a problem because of the inconsistency in the threading. However, Sellers’s thread was easier to manufacture and was soon adopted as a standard throughout the United States. The United States government began to adopt this thread standard in the mid-1800s, and several influential corporations in the railroad industry endorsed it. The resulting standard is called the United States Standard thread, and it became part of the ASA’s Vol. 1 publication.
There are two types of screw threads: coarse and fine. The latter is easier to tighten and achieves tension at lower torques. On the other hand, the coarse thread is deeper than the fine one, making it easier to apply torque to the screw. The thread angle of a screw shaft will vary from bolt to bolt, but they will both fit in the same screw. This makes it easier to select the correct screw.
screwshaft

The tapped hole (or nut) into which the screw fits

A screw can be re-threaded without having to replace it altogether. The process is different than that of a standard bolt, because it requires threading and tapping. The size of a screw is typically specified by its major and minor diameters, which is the inside distance between threads. The thread pitch, which is the distance between each thread, is also specified. Thread pitch is often expressed in threads per inch.
Screws and bolts have different thread pitches. A coarse thread has fewer threads per inch and a longer distance between threads. It is therefore larger in diameter and longer than the material it is screwed into. A coarse thread is often designated with an “A” or “B” letter. The latter is generally used in smaller-scale metalworking applications. The class of threading is called a “threaded hole” and is designated by a letter.
A tapped hole is often a complication. There is a wide range of variations between the sizes of threaded holes and nut threads, so the tapped hole is a critical dimension in many applications. However, even if you choose a threaded screw that meets the requisite tolerance, there may be a mismatch in the thread pitch. This can prevent the screw from freely rotating.

China Professional Single Double Stage Industrial AC DC Liquid Water Cooling Ring Piston Rotary Vane Dry Screw Scroll Roots Air Vakuum Vacuum Pump Replace of Kinney Klrc Kt Kmbd   sector shaft adjustment screwChina Professional Single Double Stage Industrial AC DC Liquid Water Cooling Ring Piston Rotary Vane Dry Screw Scroll Roots Air Vakuum Vacuum Pump Replace of Kinney Klrc Kt Kmbd   sector shaft adjustment screw
editor by CX 2023-11-14

China Hot selling Sawdust Screw Conveyor Powder Screw Feeder From Flexible Screw Conveyor Price Pipe Screw Conveyor Professional Manufacturer ball screw shaft manufacturer

Product Description

 

Product Description

Screw conveyor is used in many industries, such as building materials, chemical engineering, coal, CZPT and oil, fodder. It is suitable for horizontal or inclined conveyor powdery, granulous and small block material, such as grain, dinas, coal, flour, cement, chemical fertilizer and so on. It cant convey material which is easy to metamorphic, sticky, agglomeration; Using temperature of environment is -20~50ºC,conveying material temperature is ≤200ºC.
Advantages:
High efficiency conveying:
Adopt new hanging type with bearing frame hanging in the middle to increase the delivery space for materials and also reduce the resistance of logistics.together with small diameter,high rotation speed,changed screw pitch to ensure smooth,fast and uniform feeding.

Casually arrangement:
The shell is made of high quality seamless steel tube,each section is connected by the flanges and become a whole piece.No matter it is horizontal 1 or inclined one,it can deliver materials continuously.It can connected and fixed with the auxiliary device and no need for foundation.Taking fully use of space,can be removes and disassembled easily.

Diversified connection:
Inlet and discharging port can use flange connection,cloth connection,cloth with connection,universal interface
connections,and other forms.

Reliable sealing:
The joint of casing tube is with the seepage water device,process hole has carefully improved to avoid materials blocked or
machine stops due to the cement agglomerate inside the tube resulting in rain infiltration.

No need to add oil:
With unique intermediate bearing materials,it can reduce friction and also it is anti-abrasive and can self-lubricate,so it is no
need to add lubricate even running for a long period.What’s more,it also avoid the side effect no on the shaft due to the possible
mixture of lube and materials.

Product Parameters

Model LSY 100 LSY 120 LSY 140 LSY 160 LSY 200 LSY 250 LSY 300 LSY 400
Diameter of screw (mm) 90 115 135 163 185 237 285 362
Speed of main axis (r/min) 300 300 300 308 260 200 170 170
Diameter of main case(mm) 108 133 159 194 219 273 325 402
Max capacity (t/h) 7 10 15 25 40 60 90 120
Max conveying length (m) 8 10 12 15 18 25 25 25
Working angle (degree) 0~60 0~60 0~60 0~60 0~60 0~60 0~60 0~60
Motor model Length≤7M Y90S-4 Y100L1-4 Y100L2-4 Y132S-4 Y132M-4 Y160L-6 Y180M-4 Y180M-4
Power (kw) 1.1 2.2 3 5.5 7.5 11 18.5 18.5
model Lengtth≥7M Y100L1-4 Y100L2-4 Y112M-4 Y132M-4 Y160M-4 Y180L-6 Y180L-4 Y180L-4
Power ( kw) 2.2 3 4 7.5 11 15 22 22

Detailed Photos

Application:

1.Food Processing 2.Pharmaceutical

3.Powder and energy 4.Petrochemical

5.Chemicals 6.Mining and minerals

7.Feed processing 8.Plastic

Company Profile

 

FAQ

1).MOQ require?

Our moq is 1 set.(If you need the spare parts,it is also ok).

2).Payment method?
Usually,we accept T/T,Western Union and others, we can’t accept D/P,D/A

3).How to guarantee the quality?
If any machine quality problems, we accept return cargos.

Our warrantity is 18 months, promise your 0 risks purchasing

Type: Screw Conveyor
Structure: Inclining Conveyor
Material: Stainless Steel
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

screwshaft

Types of Screw Shafts

Screw shafts come in various types and sizes. These types include fully threaded, Lead, and Acme screws. Let’s explore these types in more detail. What type of screw shaft do you need? Which one is the best choice for your project? Here are some tips to choose the right screw:

Machined screw shaft

The screw shaft is a basic piece of machinery, but it can be further customized depending on the needs of the customer. Its features include high-precision threads and ridges. Machined screw shafts are generally manufactured using high-precision CNC machines or lathes. The types of screw shafts available vary in shape, size, and material. Different materials are suitable for different applications. This article will provide you with some examples of different types of screw shafts.
Ball screws are used for a variety of applications, including mounting machines, liquid crystal devices, measuring devices, and food and medical equipment. Various shapes are available, including miniature ball screws and nut brackets. They are also available without keyway. These components form a high-accuracy feed mechanism. Machined screw shafts are also available with various types of threaded ends for ease of assembly. The screw shaft is an integral part of linear motion systems.
When you need a machined screw shaft, you need to know the size of the threads. For smaller machine screws, you will need a mating part. For smaller screw sizes, the numbers will be denominated as industry Numeric Sizes. These denominations are not metric, but rather in mm, and they may not have a threads-per-inch designation. Similarly, larger machine screws will usually have threads that have a higher pitch than those with a lower pitch.
Another important feature of machine screws is that they have a thread on the entire shaft, unlike their normal counterparts. These machine screws have finer threads and are intended to be screwed into existing tapped holes using a nut. This means that these screws are generally stronger than other fasteners. They are usually used to hold together electronic components, industrial equipment, and engines. In addition to this, machine screws are usually made of a variety of materials.

Acme screw

An Acme screw is the most common type of threaded shaft available. It is available in a variety of materials including stainless steel and carbon steel. In many applications, it is used for large plates in crushing processes. ACME screws are self-locking and are ideal for applications requiring high clamping force and low friction. They also feature a variety of standard thread forms, including knurling and rolled worms.
Acme screws are available in a wide range of sizes, from 1/8″ to 6″. The diameter is measured from the outside of the screw to the bottom of the thread. The pitch is equal to the lead in a single start screw. The lead is equal to the pitch plus the number of starts. A screw of either type has a standard pitch and a lead. Acme screws are manufactured to be accurate and durable. They are also widely available in a wide range of materials and can be customized to fit your needs.
Another type of Acme screw is the ball screw. These have no back drive and are widely used in many applications. Aside from being lightweight, they are also able to move at faster speeds. A ball screw is similar to an Acme screw, but has a different shape. A ball screw is usually longer than an Acme screw. The ball screw is used for applications that require high linear speeds. An Acme screw is a common choice for many industries.
There are many factors that affect the speed and resolution of linear motion systems. For example, the nut position and the distance the screw travels can all affect the resolution. The total length of travel, the speed, and the duty cycle are all important. The lead size will affect the maximum linear speed and force output. If the screw is long, the greater the lead size, the higher the resolution. If the lead length is short, this may not be the most efficient option.
screwshaft

Lead screw

A lead screw is a threaded mechanical device. A lead screw consists of a cylindrical shaft, which includes a shallow thread portion and a tightly wound spring wire. This spring wire forms smooth, hard-spaced thread convolutions and provides wear-resistant engagement with the nut member. The wire’s leading and trailing ends are anchored to the shaft by means appropriate to the shaft’s composition. The screw is preferably made of stainless steel.
When selecting a lead screw, one should first determine its critical speed. The critical speed is the maximum rotations per minute based on the natural frequency of the screw. Excessive backlash will damage the lead screw. The maximum number of revolutions per minute depends on the screw’s minor diameter, length, assembly alignment, and end fixity. Ideally, the critical speed is 80% of its evaluated critical speed. A critical speed is not exceeded because excessive backlash would damage the lead screw and may be detrimental to the screw’s performance.
The PV curve defines the safe operating limits of a lead screw. This relationship describes the inverse relationship between contact surface pressure and sliding velocity. As the PV value increases, a lower rotation speed is required for heavier axial loads. Moreover, PV is affected by material and lubrication conditions. Besides, end fixity, which refers to the way the lead screw is supported, also affects its critical speed. Fixed-fixed and free end fixity are both possible.
Lead screws are widely used in industries and everyday appliances. In fact, they are used in robotics, lifting equipment, and industrial machinery. High-precision lead screws are widely used in the fields of engraving, fluid handling, data storage, and rapid prototyping. Moreover, they are also used in 3D printing and rapid prototyping. Lastly, lead screws are used in a wide range of applications, from measuring to assembly.

Fully threaded screw

A fully threaded screw shaft can be found in many applications. Threading is an important feature of screw systems and components. Screws with threaded shafts are often used to fix pieces of machinery together. Having fully threaded screw shafts ensures that screws can be installed without removing the nut or shaft. There are two major types of screw threads: coarse and fine. When it comes to coarse threads, UTS is the most common type, followed by BSP.
In the 1840s, a British engineer named Joseph Whitworth created a design that was widely used for screw threads. This design later became the British Standard Whitworth. This standard was used for screw threads in the United States during the 1840s and 1860s. But as screw threads evolved and international standards were established, this system remained largely unaltered. A new design proposed in 1864 by William Sellers improved upon Whitworth’s screw threads and simplified the pitch and surface finish.
Another reason for using fully threaded screws is their ability to reduce heat. When screw shafts are partially threaded, the bone grows up to the screw shaft and causes the cavity to be too narrow to remove it. Consequently, the screw is not capable of backing out. Therefore, fully threaded screws are the preferred choice for inter-fragmentary compression in children’s fractures. However, surgeons should know the potential complication when removing metalwork.
The full thread depth of a fully threaded screw is the distance at which a male thread can freely thread into the shaft. This dimension is typically one millimeter shy of the total depth of the drilled hole. This provides space for tap lead and chips. The full-thread depth also makes fully threaded screws ideal for axially-loaded connections. It is also suitable for retrofitting applications. For example, fully threaded screws are commonly used to connect two elements.
screwshaft

Ball screw

The basic static load rating of a ball screw is determined by the product of the maximum axial static load and the safety factor “s0”. This factor is determined by past experience in similar applications and should be selected according to the design requirements of the application. The basic static load rating is a good guideline for selecting a ball screw. There are several advantages to using a ball screw for a particular application. The following are some of the most common factors to consider when selecting a ball screw.
The critical speed limit of a ball screw is dependent on several factors. First of all, the critical speed depends on the mass, length and diameter of the shaft. Second, the deflection of the shaft and the type of end bearings determine the critical speed. Finally, the unsupported length is determined by the distance between the ball nut and end screw, which is also the distance between bearings. Generally, a ball screw with a diameter greater than 1.2 mm has a critical speed limit of 200 rpm.
The first step in manufacturing a high-quality ball screw is the choice of the right steel. While the steel used for manufacturing a ball screw has many advantages, its inherent quality is often compromised by microscopic inclusions. These microscopic inclusions may eventually lead to crack propagation, surface fatigue, and other problems. Fortunately, the technology used in steel production has advanced, making it possible to reduce the inclusion size to a minimum. However, higher-quality steels can be expensive. The best material for a ball screw is vacuum-degassed pure alloy steel.
The lead of a ball screw shaft is also an important factor to consider. The lead is the linear distance between the ball and the screw shaft. The lead can increase the amount of space between the balls and the screws. In turn, the lead increases the speed of a screw. If the lead of a ball screw is increased, it may increase its accuracy. If not, the lead of a ball screw can be improved through preloading, lubrication, and better mounting accuracy.

China Hot selling Sawdust Screw Conveyor Powder Screw Feeder From Flexible Screw Conveyor Price Pipe Screw Conveyor Professional Manufacturer   ball screw shaft manufacturerChina Hot selling Sawdust Screw Conveyor Powder Screw Feeder From Flexible Screw Conveyor Price Pipe Screw Conveyor Professional Manufacturer   ball screw shaft manufacturer
editor by CX 2023-11-13

China OEM Farm Use Truck Loading and Unloading Flexible Grain Screw Conveyor double set screw shaft collar

Product Description

Farm Use Truck Loading and Unloading Flexible CZPT Screw Conveyor

Description:

The tube screw conveyors have a wide range of applications in powder and granular material handling. Depending on the material being transported, different types of conveyors and feeders can be selected, for example: concrete products (cement, fly ash, filler dust, dust), bituminous products (hot and cold process dust), building ready-mix materials (Dried lime, sand, cement, fillers), glass technology (limestone, soda ash, sand, etc.), foundry (sand, bentonite), etc.

 

 

Structure size:
Tubular screw conveyor includes welding end flange, feed port, discharge port, observation window below the feed port and middle hanging bearing, spiral blade welded on the center pipe, the end bearing assembly contains self-adjustment Shaft sealing equipment, splined bushings, and lifting eye for each pipe section. Spiral blade types are small in overall size, compact in size, and spare parts are less in number. Maintenance is easy to install.

 

Tubular screw conveyor has the following advantages:
1. The structure is relatively simple and the cost is low.
2. Reliable work, easy maintenance and management.
3. Compact size, small cross-section size, small footprint. It is easy to get in and out of hatches and carriages during unloading operations at the port.
4. Sealed delivery can be achieved, which is conducive to the delivery of materials that are easy to fly, hot and odor, can reduce environmental pollution, and improve the working conditions of port workers.
5. Easy to load and unload. The horizontal screw conveyor can be loaded and unloaded at any point on its conveying line; the vertical screw conveyor can be equipped with a relative screw type picking device and can have excellent reclaiming performance; the screw shaft directly contacting the material pile has automatic retrieving. The capacity can be used as a reclaimer for other types of unloading machinery at ports.
6. The reverse conveying can also enable a conveyor to convey material in 2 directions at the same time, namely to the center or away from the center.
7. The unit consumes more energy.
8. The materials are easily crushed and worn in the process of transportation, and the spiral blades and troughs are also worn more seriously.

Model number LSY140 LSY160 LSY200 LSY250 LSY300 LSY400
Screw diameter(mm) 140 163 187 238 290 365
Rotating speed(r/min) 300 300 260 200 175/300 175
Outer diameter(mm) 168 194 219 273 325 402
Max length(m) 11 12 13 16 18 18
Incline degree(α°) 0°~60° 0°~60° 0°~60° 0°~60° 0°~55° 0°~55°
Conveying capacity(t/h) 17-9 30-20 50-32 70-53 82-60/120-85 140-110
Motor Model L≤-7 Y132S-4 Y132S-4 Y132M-4 Y160L-6 Y180M-4 Y180M-4
  Power(kw)   5.5 5.5 7.5 11 18.5 18.5
  Model L>7 Y132S-4 Y132M-4 Y160M-4 Y180L-6 Y180L-4 Y180L-4
  Power(kw)   5.5 7.5 11 15 22 22

                                              

Structure: Conveyor System
Material: Stainless Steel
Material Feature: Oil Resistant, Heat Resistant, Fire Resistant
Application: Chemical Industry, Grain Transport, Mining Transport, Power Plant, Screw Conveyor
Condition: New
Product Name: Tube Type Screw Conveyor
Customization:
Available

|

Customized Request

screwshaft

Lead Screws and Clamp Style Collars

If you have a lead screw, you’re probably interested in learning about the Acme thread on this type of shaft. You might also be interested in finding out about the Clamp style collars and Ball screw nut. But before you buy a new screw, make sure you understand what the terminology means. Here are some examples of screw shafts:

Acme thread

The standard ACME thread on a screw shaft is made of a metal that is resistant to corrosion and wear. It is used in a variety of applications. An Acme thread is available in a variety of sizes and styles. General purpose Acme threads are not designed to handle external radial loads and are supported by a shaft bearing and linear guide. Their design is intended to minimize the risk of flank wedging, which can cause friction forces and wear. The Centralizing Acme thread standard caters to applications without radial support and allows the thread to come into contact before its flanks are exposed to radial loads.
The ACME thread was first developed in 1894 for machine tools. While the acme lead screw is still the most popular screw in the US, European machines use the Trapezoidal Thread (Metric Acme). The acme thread is a stronger and more resilient alternative to square threads. It is also easier to cut than square threads and can be cut by using a single-point threading die.
Similarly to the internal threads, the metric versions of Acme are similar to their American counterparts. The only difference is that the metric threads are generally wider and are used more frequently in industrial settings. However, the metric-based screw threads are more common than their American counterparts worldwide. In addition, the Acme thread on screw shafts is used most often on external gears. But there is still a small minority of screw shafts that are made with a metric thread.
ACME screws provide a variety of advantages to users, including self-lubrication and reduced wear and tear. They are also ideal for vertical applications, where a reduced frictional force is required. In addition, ACME screws are highly resistant to back-drive and minimize the risk of backlash. Furthermore, they can be easily checked with readily available thread gauges. So, if you’re looking for a quality ACME screw for your next industrial project, look no further than ACME.

Lead screw coatings

The properties of lead screw materials affect their efficiency. These materials have high anti-corrosion, thermal resistance, and self-lubrication properties, which eliminates the need for lubrication. These coating materials include polytetrafluoroethylene (PFE), polyether ether ketone (PEK), and Vespel. Other desirable properties include high tensile strength, corrosion resistance, and rigidity.
The most common materials for lead screws are carbon steel, stainless steel, and aluminum. Lead screw coatings can be PTFE-based to withstand harsh environments and remove oil and grease. In addition to preventing corrosion, lead screw coatings improve the life of polymer parts. Lead screw assembly manufacturers offer a variety of customization options for their lead screw, including custom-molded nuts, thread forms, and nut bodies.
Lead screws are typically measured in rpm, or revolutions per minute. The PV curve represents the inverse relationship between contact surface pressure and sliding velocity. This value is affected by the material used in the construction of the screw, lubrication conditions, and end fixity. The critical speed of lead screws is determined by their length and minor diameter. End fixity refers to the support for the screw and affects its rigidity and critical speed.
The primary purpose of lead screws is to enable smooth movement. To achieve this, lead screws are usually preloaded with axial load, enabling consistent contact between a screw’s filets and nuts. Lead screws are often used in linear motion control systems and feature a large area of sliding contact between male and female threads. Lead screws can be manually operated or mortised and are available in a variety of sizes and materials. The materials used for lead screws include stainless steel and bronze, which are often protected by a PTFE type coating.
These screws are made of various materials, including stainless steel, bronze, and various plastics. They are also made to meet specific requirements for environmental conditions. In addition to lead screws, they can be made of stainless steel, aluminum, and carbon steel. Surface coatings can improve the screw’s corrosion resistance, while making it more wear resistant in tough environments. A screw that is coated with PTFE will maintain its anti-corrosion properties even in tough environments.
screwshaft

Clamp style collars

The screw shaft clamp style collar is a basic machine component, which is attached to the shaft via multiple screws. These collars act as mechanical stops, load bearing faces, or load transfer points. Their simple design makes them easy to install. This article will discuss the pros and cons of this style of collar. Let’s look at what you need to know before choosing a screw shaft clamp style collar. Here are some things to keep in mind.
Clamp-style shaft collars are a versatile mounting option for shafts. They have a recessed screw that fully engages the thread for secure locking. Screw shaft clamp collars come in different styles and can be used in both drive and power transmission applications. Listed below are the main differences between these two styles of collars. They are compatible with all types of shafts and are able to handle axial loads of up to 5500 pounds.
Clamp-style shaft collars are designed to prevent the screw from accidentally damaging the shaft when tightened. They can be tightened with a set screw to counteract the initial clamping force and prevent the shaft from coming loose. However, when tightening the screw, you should use a torque wrench. Using a set screw to tighten a screw shaft collar can cause it to warp and reduce the surface area that contacts the shaft.
Another key advantage to Clamp-style shaft collars is that they are easy to install. Clamp-style collars are available in one-piece and two-piece designs. These collars lock around the shaft and are easy to remove and install. They are ideal for virtually any shaft and can be installed without removing any components. This type of collar is also recommended for those who work on machines with sensitive components. However, be aware that the higher the OD, the more difficult it is to install and remove the collar.
Screw shaft clamp style collars are usually one-piece. A two-piece collar is easier to install than a one-piece one. The two-piece collars provide a more effective clamping force, as they use the full seating torque. Two-piece collars have the added benefit of being easy to install because they require no tools to install. You can disassemble one-piece collars before installing a two-piece collar.
screwshaft

Ball screw nut

The proper installation of a ball screw nut requires that the nut be installed on the center of the screw shaft. The return tubes of the ball nut must be oriented upward so that the ball nut will not overtravel. The adjusting nut must be tightened against a spacer or spring washer, then the nut is placed on the screw shaft. The nut should be rotated several times in both directions to ensure that it is centered.
Ball screw nuts are typically manufactured with a wide range of preloads. Large preloads are used to increase the rigidity of a ball screw assembly and prevent backlash, the lost motion caused by a clearance between the ball and nut. Using a large amount of preload can lead to excessive heat generation. The most common preload for ball screw nuts is 1 to 3%. This is usually more than enough to prevent backlash, but a higher preload will increase torque requirements.
The diameter of a ball screw is measured from its center, called the ball circle diameter. This diameter represents the distance a ball will travel during one rotation of the screw shaft. A smaller diameter means that there are fewer balls to carry the load. Larger leads mean longer travels per revolution and higher speeds. However, this type of screw cannot carry a greater load capacity. Increasing the length of the ball nut is not practical, due to manufacturing constraints.
The most important component of a ball screw is a ball bearing. This prevents excessive friction between the ball and the nut, which is common in lead-screw and nut combinations. Some ball screws feature preloaded balls, which avoid “wiggle” between the nut and the ball. This is particularly desirable in applications with rapidly changing loads. When this is not possible, the ball screw will experience significant backlash.
A ball screw nut can be either single or multiple circuits. Single or multiple-circuit ball nuts can be configured with one or two independent closed paths. Multi-circuit ball nuts have two or more circuits, making them more suitable for heavier loads. Depending on the application, a ball screw nut can be used for small clearance assemblies and compact sizes. In some cases, end caps and deflectors may be used to feed the balls back to their original position.

China OEM Farm Use Truck Loading and Unloading Flexible Grain Screw Conveyor   double set screw shaft collarChina OEM Farm Use Truck Loading and Unloading Flexible Grain Screw Conveyor   double set screw shaft collar
editor by CX 2023-11-13

China Standard Plastic Extruder Screw Barrel for BOPET Stretch Film Extruder Line screw shaft drawing

Product Description

Stainless Steel Twin Screw Extruder Tex160 Barrel Petrochemical
     

Production description:

 

Production name: Screw barrel Brand Name: JOINER
Model Number 133 Material: 45# steel + SAM26 lining
Place of Origin ZheJiang , China (Mainland) Application Pelleting twin screw wxtruder 
Diameter 171 mm Classify open barrel, venting barrel

 

We manufacture barrels for co-rotating twin screw extruders ranging from 12 mm to 350 mm and over. Our manufacturing specializes in barrels for twin screw extruders and is optimized for flexible order handling.

JOINER supplies cylinder element suitable for the following extruder products lines :
-APV        -KOBE           -OMC
-Buhler      -KraussMaffei      -Theysohn
-Buss       -Berstorff-          -Toshiba
-Clextral     -Labtech          -USEON
-Coperon     -Lantai          – others
-JSW        -Leistritz    
-Keya        -Maris

Range of Work
Diameter of 12-350mm

Types of  Barrels
Standard for classification: Design geometry           Standard for classification: With inner or not
* Feeding barrel                                                               * Solid barrel
* Closed barrel                                                                 * Barrels with inners
* Vent barrel
* Combi barrel
* Extended degassing barrel
* Combi barrel with backward venting

We offer a broader choice of materials:

By working closely with customers in choosing optional materials,we can minimize wear and tear and associated costs.

Our Production Plant

FRQ
 
1. Q: Are you a factory or trading company? 
 —-A: A factory 
2. Q: Where is your factory located? How can I visit there? 
—–A: Our factory is located in HangZhou, ZheJiang  Province, China, 
1) You can fly to HangZhou Airport directly. We will pick you up when you arrive in the airport; 
All our clients, from domestic or abroad, are warmly welcome to visit us! 
                                             
3.Q: What makes you different with others?
—-A: 1) Our Excellent Service 
 For a quick, no hassle quote just send email to us
 We promise to reply with a price within 24 hours – sometimes even within the hour.
 
2) Our quick manufacturing time
For Normal orders, we will promise to produce within 30 working days.
As a manufacturer, we can ensure the delivery time according to the formal contract.
 
 4.Q: How about the delivery time? 
—-A: This depends on the product. Typically standard products are delivered within 30 days. 
 

  1.  Q: What is the term of payment? 
    —-A: 1) T/T payment;   2) LC;  

 
6.Q: May I know the status of my order?
—-A: Yes .We will send you information and photos at different production stage of your order. You will get the latest information in time. 

After-sales Service: 6 Months
Warranty: 6 Months
Standard: DIN, GB
Technics: Forging
Feature: Recycle
Material: Stainless Steel
Samples:
US$ 1000/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

screwshaft

Screw Shaft Types

A screw shaft is a cylindrical part that turns. Depending on its size, it is able to drive many different types of devices. The following information outlines the different types of screws, including their sizes, material, function, and applications. To help you select the right screw shaft, consider the following factors:

Size

A screw can come in a variety of shapes and sizes, ranging from a quarter to a quarter-inch in diameter. A screw is a cylindrical shaft with an inclined plane wrapped around it, and its main function is to fasten objects together by translating torque into a linear force. This article will discuss the dimensions of screws and how to determine the size of a screw. It is important to note that screw sizes can be large and small depending on the purpose.
The diameter of a screw is the diameter of its shaft, and it must match the inner diameter of its nuts and washers. Screws of a certain diameter are also called machine screws, and they can be larger or smaller. Screw diameters are measured on the shaft underneath the screw head. The American Society of Mechanical Engineers (ASME) standardized screw diameters in 3/50-inch to 16 (3/8-inch) inches, and more recently, sizes were added in U.S. fractions of an inch. While shaft and head diameters are standardized, screw length may vary from job to job.
In the case of the 2.3-mm screw group, the construct strength was not improved by the 1.2-mm group. The smaller screw size did not increase the strength of the construct. Further, ABS material did not improve the construct strength. Thus, the size of screw shaft is an important consideration in model design. And remember that the more complex your model is, the larger it will be. A screw of a given size will have a similar failure rate as a screw of a different diameter.
Although different screw sizes are widely used, the differences in screw size were not statistically significant. Although there are some limitations, screws of different sizes are generally sufficient for fixation of a metacarpal shaft fracture. However, further clinical studies are needed to compare screw sizes for fracture union rates. So, if you are unsure of what size of screw shaft you need for your case, make sure to check the metric chart and ensure you use the right one.
screwshaft

Material

The material of a screw shaft plays an important role in the overall performance of a screw. Axial and central forces act to apply torque to the screw, while external forces, such as friction, exert a bending moment. The torsional moments are reflected in the torque, and this causes the screw to rotate at a higher rate than necessary. To ensure the longevity of the screw, the material of the screw shaft should be able to handle the bending moment, while the diameter of the shaft should be small enough to avoid causing damage.
Screws are made from different metals, such as steel, brass, titanium, and bronze. Manufacturers often apply a top coating of chromium, brass, or zinc to improve corrosion resistance. Screws made of aluminum are not durable and are prone to rusting due to exposure to weather conditions. The majority of screw shafts are self-locking. They are suited for many applications, including threaded fasteners, C-clamps, and vises.
Screws that are fabricated with conical sections typically feature reduced open cross-sectional areas at the discharge point. This is a key design parameter of conical screw shafts. In fact, reductions of up to 72% are common across a variety of applications. If the screw is designed to have a hard-iron hanger bearing, it must be hardened. If the screw shaft is not hardened, it will require an additional lubricant.
Another consideration is the threads. Screw shafts are typically made of high-precision threads and ridges. These are manufactured on lathes and CNC machines. Different shapes require different materials. Materials for the screw shaft vary. There are many different sizes and shapes available, and each one has its own application. In addition to helical and conical screw shafts, different materials are also available. When choosing material, the best one depends on the application.
The life of the screw depends on its size, load, and design. In general, the material of the screw shaft, nut body, and balls and rollers determine its fatigue life. This affects the overall life of the screw. To determine whether a specific screw has a longer or shorter life, the manufacturer must consider these factors, as well as the application requirements. The material should be clean and free of imperfections. It should be smooth and free of cracks or flaking, which may result in premature failure.

Function

The function of a screw shaft is to facilitate the rotation of a screw. Screws have several thread forms, including single-start, double-start and multi-start. Each form has its own advantages and disadvantages. In this article we’ll explore each of them in detail. The function of a screw shaft can vary based on its design, but the following are common types. Here are some examples of screw shaft types and their purposes.
The screw’s torque enables it to lift objects. It can be used in conjunction with a bolt and nut to lift a load. Screws are also used to secure objects together. You can use them in screw presses, vises, and screw jacks. But their primary function is to hold objects together. Listed below are some of their main functions. When used to lift heavy loads, they can provide the required force to secure an object.
Screws can be classified into two types: square and round. Square threads are more efficient than round ones because they apply 0deg of angle to the nut. Square threads are also stronger than round threads and are often used in high-load applications. They’re generally cheaper to manufacture and are more difficult to break. And unlike square threads, which have a 0deg thread angle, these threads can’t be broken easily with a screwdriver.
A screw’s head is made of a series of spiral-like structures that extend from a cylindrical part to a tip. This portion of the screw is called the shank and is made of the smallest area. The shank is the portion that applies more force to the object. As the shaft extends from the head, it becomes thinner and narrow, forming a pointed tip. The head is the most important part of the screw, so it needs to be strong to perform its function.
The diameter of the screw shaft is measured in millimeters. The M8 screw has a thread pitch of 1.25 mm. Generally, the size of the screw shaft is indicated by the major and minor diameter. These dimensions are appended with a multiplication sign (M8x1).
screwshaft

Applications

The design of screws, including their size and shape, determines their critical rotating speeds. These speeds depend on the threaded part of the screw, the helix angle, and the geometry of the contact surfaces. When applied to a screw, these limits are referred to as “permissible speed limits.” These maximum speeds are meant for short periods of time and optimized running conditions. Continuous operation at these speeds can reduce the calculated life of a nut mechanism.
The main materials used to manufacture screws and screw shafts include steel, stainless steel, titanium, bronze, and brass. Screws may be coated for corrosion resistance, or they may be made of aluminium. Some materials can be threaded, including Teflon and nylon. Screw threads can even be molded into glass or porcelain. For the most part, steel and stainless steel are the most common materials for screw shafts. Depending on the purpose, a screw will be made of a material that is suitable for the application.
In addition to being used in fasteners, screw shafts are used in micrometers, drillers, conveyor belts, and helicopter blades. There are numerous applications of screw shafts, from weighing scales to measuring lengths. If you’re in the market for a screw, make sure to check out these applications. You’ll be happy you did! They can help you get the job done faster. So, don’t delay your next project.
If you’re interested in learning about screw sizing, then it’s important to know the axial and moment loads that your screws will experience. By following the laws of mechanics and knowing the load you can calculate the nominal life of your screw. You can also consider the effect of misalignment, uneven loading, and shocks on your screw. These will all affect the life of your screw. Then, you can select the right screw.

China Standard Plastic Extruder Screw Barrel for BOPET Stretch Film Extruder Line   screw shaft drawingChina Standard Plastic Extruder Screw Barrel for BOPET Stretch Film Extruder Line   screw shaft drawing
editor by CX 2023-11-08

China factory Set Screw Locking Nylon Shaft Collar screw shaft for oil press

Product Description

Product Description

CUSTOM DESIGNS

As a service to our customers, we offer our vast manufacturing experience and talents to meet special needs with custom parts. our in-house engineering team has extensive experience designing and custom engineering solutions to meet your requirements. if you do not see what you are looking for in our standard line, please inquire about custom options.
we manufacture shaft collars in 12L15 lead-free steel with a zinc or proprietary black oxide finish, 303 and 316 stainless steel, high-strength 2571 aluminum, and engineered plastic. Bore sizes range from 1/8″ to 6″ and 3mm to 150mm.ONE-PIE

1.materials:stainless steel,alloy steel ,aluminum ,brass etc. 
2.
Finish: Zinc plating, Nickel plating,nature
3.competitive price ,prompt delivery 
4.OEM service as your drawings
Technics
1.Milling 2.grinding 3.Turning 4.wire-cutting 5.CNC bending 6.CNC machining 7.Stamping 8.forging 9.boring 10.broaching and so on .
Accuracy
1.Milling:0.01mm 2.Turning:0.01mm 3.Grinding:0.002mm 4.Wire-cutting :0.005mm 5.CNC Machining : 0.005mm

 

Company Profile

RunCheng Import and Export Co., Ltd is the leading professional OEM/ODM manufactory of auto parts, hardware, graphite products, sanitary ware and mechanical items. Product ranges include CNC machining parts, casting parts, stamping parts, forged parts, turning parts, pipe fitting, rubber parts, plastic parts and many more.

We ensure the highest quality by using only the highest quality raw materials and by subjecting all our products to a rigorous Quality Control System. The quality control of our large-scale production process conforms to ISO9001 standards.

We have won the trust of our clients with our top quality products and outstanding service.

Our business is built on the following 4 advantages, namely Full range of products, Top quality, Outstanding service and Reasonable price!

Contact us at once and let′ S do mutually beneficial business together!


Production ability
  

EQUIPMENT LIST

NAME

 

SPECIFICATION 

BRAND           

ORIGINAL PLACE 

QUANTITY

CNC Machines

Graph 600

KNUTH

CHINA

20

1370

KAFO

TAPAN

20

EDM Machines

ZNC450

BHangZhouNA

ZheJiang

20

ZNC430

BHangZhouNA

ZheJiang

30

Grinding Machines

ACC-350ST

BESFORD

CHINA

50

Auto Lathe Machining  

L150G-II

OKUMA

CHINA

80

Wire Cutting Machines  

DK7732

NEW FAST

CHNA

30

Milling Machine

SHCM-97A

GENTIGER

ZheJiang

20

CMM Machine          

CRT-PA574

MITUTYO

JAPAN

10

Hardness Tester

TILO-T60

MITUTYO

JAPAN

5

Productions showing:
Equipments & Working plant:
Worry about our quality problem?

We are an IATF16949:2016 Certifed supplier, strictly execute inspection on ISO quality control system. All our products will pass 10-step inspections: it starts from incoming material inspection to IPQC,  then FQC and final inspection with reports before shipment.

Packaging & Shipping

Generally carton or wooden case or plastic foam with standard export wooden pallet , or as per consumer’s requirements.
Certifications:

 

Your Satisfaction, Our Motivation!

FAQ

 

Q1. Are you factory or trading company?    

 A: We are a customized factory with independent oversea trading office .

 

Q2.Can you provide sample for us?     

 A: Yes, free sample is available

 

Q3. What raw material do you use?   

 A: Stainless Steel, Carbon Steel, Mild Steel, Galvanized Steel, Aluminum alloy, brass, copper, Aluminum etc.

 

Q4. What finishes can you provide?

 A: powder coating, polishing, zinc/nickel /chrome plating, painting, anodized, hot dip galvanized, sandblasted etc.

 

Q5. How do you ensure quality control? 

 A: We inspect every process based on your drawings or samples and also check the products before packing

 

Q6. Is small quantity available?

 A: Yes, Small quantity for trial order is available. 

  

Q7. How do you ship the goods?

A: We have our cooperation forwarder, they can deliver the goods to you in very short time with competitive price, and you can ship by your own agent as your convenience.

 

Q8. How about your delivery time ?  

 A: 3-10 days for samples and 15-45 days for mass production .

 

Q: How To Place A Order?

  * You send us drawing or sample

  * We make the sample and send it to you

  * You think the sample is good then place an order and pay us 30% deposit

  * We start to make the product

  * When the goods is done, we take photoes for your check and you then pay the balance

  * We deliver the products to courier company

 

Application: Auto and Motorcycle Accessory, Machinery Accessory, Transmission
Standard: GB, EN, JIS Code, TEMA, ASME, Customed
Surface Treatment: Anodizing
Production Type: Mass Production
Machining Method: CNC Turning
Material: Nylon, Steel, Plastic, Alloy, Aluminum, Cold Forming Steel
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

screwshaft

Lead Screws and Clamp Style Collars

If you have a lead screw, you’re probably interested in learning about the Acme thread on this type of shaft. You might also be interested in finding out about the Clamp style collars and Ball screw nut. But before you buy a new screw, make sure you understand what the terminology means. Here are some examples of screw shafts:

Acme thread

The standard ACME thread on a screw shaft is made of a metal that is resistant to corrosion and wear. It is used in a variety of applications. An Acme thread is available in a variety of sizes and styles. General purpose Acme threads are not designed to handle external radial loads and are supported by a shaft bearing and linear guide. Their design is intended to minimize the risk of flank wedging, which can cause friction forces and wear. The Centralizing Acme thread standard caters to applications without radial support and allows the thread to come into contact before its flanks are exposed to radial loads.
The ACME thread was first developed in 1894 for machine tools. While the acme lead screw is still the most popular screw in the US, European machines use the Trapezoidal Thread (Metric Acme). The acme thread is a stronger and more resilient alternative to square threads. It is also easier to cut than square threads and can be cut by using a single-point threading die.
Similarly to the internal threads, the metric versions of Acme are similar to their American counterparts. The only difference is that the metric threads are generally wider and are used more frequently in industrial settings. However, the metric-based screw threads are more common than their American counterparts worldwide. In addition, the Acme thread on screw shafts is used most often on external gears. But there is still a small minority of screw shafts that are made with a metric thread.
ACME screws provide a variety of advantages to users, including self-lubrication and reduced wear and tear. They are also ideal for vertical applications, where a reduced frictional force is required. In addition, ACME screws are highly resistant to back-drive and minimize the risk of backlash. Furthermore, they can be easily checked with readily available thread gauges. So, if you’re looking for a quality ACME screw for your next industrial project, look no further than ACME.

Lead screw coatings

The properties of lead screw materials affect their efficiency. These materials have high anti-corrosion, thermal resistance, and self-lubrication properties, which eliminates the need for lubrication. These coating materials include polytetrafluoroethylene (PFE), polyether ether ketone (PEK), and Vespel. Other desirable properties include high tensile strength, corrosion resistance, and rigidity.
The most common materials for lead screws are carbon steel, stainless steel, and aluminum. Lead screw coatings can be PTFE-based to withstand harsh environments and remove oil and grease. In addition to preventing corrosion, lead screw coatings improve the life of polymer parts. Lead screw assembly manufacturers offer a variety of customization options for their lead screw, including custom-molded nuts, thread forms, and nut bodies.
Lead screws are typically measured in rpm, or revolutions per minute. The PV curve represents the inverse relationship between contact surface pressure and sliding velocity. This value is affected by the material used in the construction of the screw, lubrication conditions, and end fixity. The critical speed of lead screws is determined by their length and minor diameter. End fixity refers to the support for the screw and affects its rigidity and critical speed.
The primary purpose of lead screws is to enable smooth movement. To achieve this, lead screws are usually preloaded with axial load, enabling consistent contact between a screw’s filets and nuts. Lead screws are often used in linear motion control systems and feature a large area of sliding contact between male and female threads. Lead screws can be manually operated or mortised and are available in a variety of sizes and materials. The materials used for lead screws include stainless steel and bronze, which are often protected by a PTFE type coating.
These screws are made of various materials, including stainless steel, bronze, and various plastics. They are also made to meet specific requirements for environmental conditions. In addition to lead screws, they can be made of stainless steel, aluminum, and carbon steel. Surface coatings can improve the screw’s corrosion resistance, while making it more wear resistant in tough environments. A screw that is coated with PTFE will maintain its anti-corrosion properties even in tough environments.
screwshaft

Clamp style collars

The screw shaft clamp style collar is a basic machine component, which is attached to the shaft via multiple screws. These collars act as mechanical stops, load bearing faces, or load transfer points. Their simple design makes them easy to install. This article will discuss the pros and cons of this style of collar. Let’s look at what you need to know before choosing a screw shaft clamp style collar. Here are some things to keep in mind.
Clamp-style shaft collars are a versatile mounting option for shafts. They have a recessed screw that fully engages the thread for secure locking. Screw shaft clamp collars come in different styles and can be used in both drive and power transmission applications. Listed below are the main differences between these two styles of collars. They are compatible with all types of shafts and are able to handle axial loads of up to 5500 pounds.
Clamp-style shaft collars are designed to prevent the screw from accidentally damaging the shaft when tightened. They can be tightened with a set screw to counteract the initial clamping force and prevent the shaft from coming loose. However, when tightening the screw, you should use a torque wrench. Using a set screw to tighten a screw shaft collar can cause it to warp and reduce the surface area that contacts the shaft.
Another key advantage to Clamp-style shaft collars is that they are easy to install. Clamp-style collars are available in one-piece and two-piece designs. These collars lock around the shaft and are easy to remove and install. They are ideal for virtually any shaft and can be installed without removing any components. This type of collar is also recommended for those who work on machines with sensitive components. However, be aware that the higher the OD, the more difficult it is to install and remove the collar.
Screw shaft clamp style collars are usually one-piece. A two-piece collar is easier to install than a one-piece one. The two-piece collars provide a more effective clamping force, as they use the full seating torque. Two-piece collars have the added benefit of being easy to install because they require no tools to install. You can disassemble one-piece collars before installing a two-piece collar.
screwshaft

Ball screw nut

The proper installation of a ball screw nut requires that the nut be installed on the center of the screw shaft. The return tubes of the ball nut must be oriented upward so that the ball nut will not overtravel. The adjusting nut must be tightened against a spacer or spring washer, then the nut is placed on the screw shaft. The nut should be rotated several times in both directions to ensure that it is centered.
Ball screw nuts are typically manufactured with a wide range of preloads. Large preloads are used to increase the rigidity of a ball screw assembly and prevent backlash, the lost motion caused by a clearance between the ball and nut. Using a large amount of preload can lead to excessive heat generation. The most common preload for ball screw nuts is 1 to 3%. This is usually more than enough to prevent backlash, but a higher preload will increase torque requirements.
The diameter of a ball screw is measured from its center, called the ball circle diameter. This diameter represents the distance a ball will travel during one rotation of the screw shaft. A smaller diameter means that there are fewer balls to carry the load. Larger leads mean longer travels per revolution and higher speeds. However, this type of screw cannot carry a greater load capacity. Increasing the length of the ball nut is not practical, due to manufacturing constraints.
The most important component of a ball screw is a ball bearing. This prevents excessive friction between the ball and the nut, which is common in lead-screw and nut combinations. Some ball screws feature preloaded balls, which avoid “wiggle” between the nut and the ball. This is particularly desirable in applications with rapidly changing loads. When this is not possible, the ball screw will experience significant backlash.
A ball screw nut can be either single or multiple circuits. Single or multiple-circuit ball nuts can be configured with one or two independent closed paths. Multi-circuit ball nuts have two or more circuits, making them more suitable for heavier loads. Depending on the application, a ball screw nut can be used for small clearance assemblies and compact sizes. In some cases, end caps and deflectors may be used to feed the balls back to their original position.

China factory Set Screw Locking Nylon Shaft Collar   screw shaft for oil pressChina factory Set Screw Locking Nylon Shaft Collar   screw shaft for oil press
editor by CX 2023-11-07

China HB-310 Full automatic thread rolling machines for set screws ball screw shaft hardness

Application: CZPT Pipe
Condition: New, New
Production Capacity: 30-40pcs/min
Showroom Location: Viet Nam, India
Video outgoing-inspection: Provided
Machinery Test Report: Provided
Marketing Type: Ordinary Product
Warranty of core components: 1 Year
Core Components: Engine, Motor, Gear
Voltage: 380V
Power: 2.2kw
Dimension(L*W*H): 1000*1450*750mm
Weight: 360
Warranty: 1 Year
Key Selling Points: Competitive Price
Applicable Industries: Manufacturing Plant
Product name: hydraulic thread rolling machine
After-sales Service Provided: No after-sales service
Color: Thread rolling machine
Name: screw thread rolling machine
Certification: ISO9001
Mould Life: According to the degree of use
After Warranty Service: Online support
Design software: AutoCAD Pro
Drawing Format: Dwg .step
Packaging Details: Machine with protective film, then pack with wooden box & pallet.
Port: HangZhou

HB-310 Full automatic thread rolling machines for set screws HB-310 two-axles rolling machine is a special roller for machine meter screw, stop screw, headless screw design, and the diagonal roller is a little bit compared with the flat type:1. The oblique roller is affected by gravity, the feed material is faster and more stable, and the processing speed is faster.2. Higher precision of inclined rolling machine;3. The feeding part is higher and the operation is more convenient!

Packaging & Shipping

Our Services
Training and Installation
1.Professional Technical Team
2.Training your engineer in our company.
3.3 years warranty. If the machine have the quality problem , we would renewal the parts for you during the warranty period. if you have any question, you can contact with us any time, Power Transmission Part One Way Backstop Clutch Bearing BS220 for Belt Conveyor we will solve your problems within 24 hours .
Certification and after service1. Match the technology standard, ISO producing certification 2. CE certification 3. 3years warranty since the delivery board. Our advantage: 1. Short delivery period. 2. Effective communication 3. Interface customized.

Installation and training:
1:If buyers visit our factory and check the machine, we will teach you how to install and use the machine, and also train your workers/technician face to face.
2:.Without visiting, we will send you user manual and video to teach you to install and operate.
3:.If buyer needs our technician to go to your local factory, please arrange airline ticket and board and lodging and other necessary things

1. What is MOQ?—1 set.2. What is the lead time of goods?—Generally speaking, goods can be sent within 45 days according to our production arrangment.
3. What kinds of payment terms are acceptable to you?—We usually accept L/C at sight and T/T(50% in advance and 50% before shipment. )4. Are your a direct manufacturer?–Yes, we are professional manufacturer, factory was founded in 2004, has designing department, production department, sales department, as well as the shipping department

Company Information
HangZhou HongBo Precision Machineery Manufacturing Co., Ltd. is a production,
design and sales professionals industry manufacturers. There are
screw machines, thread work tools, Four Bolt Flanges cast iron housing pillow block bearing UCFC205-16 for support shafts and couplings. lighting tube metal machinery,
four tungsten steel mold products.
The first screw machine: two-axis rolling machine(solid shaft only), Three-axis rolling machine(hollow tube only). Hydraulic thread rolling machine, automatic rolling machine, inside and outside the pipe threading machines, tapping machines.
The second thread tools: 2 rolling dies, 3 wheel roller
cone, straight, textured, NPT, wire tapping die.
The third category lighting tube metal machine: automatic cut tube machine, manual pipe cutting machine, chamfering machines, heading machines,bending machine, shrink tube machine, OEM Agriculture Machinery Farm Tractor Spare Parts cone machine,flower tube machine, throwing ray machine, trombone machine.
Tungsten steel mold fourth categroy: trombone model, garland die, heading mold, shrink tube mold, cone mold, expansion tube mold, different shaped mold, pulled up the mold.
The company has HongBo brand machine tolls, imported brands TQSG, Xihu (West Lake) Dis., CZPT brands cone. ZheJiang Xihu (West Lake) Dis.iyang is also rolling Machine agent, ZheJiang cone, universal Joints.

screwshaft

Screw Shaft Types

If you’re looking for a screw shaft, but aren’t sure which type to buy, you’re in luck. In this article, we’ll talk about the different types, including Threaded shank, Round head, and Machined. Once you’ve read it, you’ll know which type to buy. Then, you can decide whether you want a ball screw nut or a threaded shank.

Machined screw shafts

Besides the standard stainless steel shaft, manufacturers also provide a variety of other materials, such as titanium, bronze, and brass. In addition to stainless steel, manufacturers also provide a variety of top-coating options, including zinc, brass, and chromium. Aluminum screws are not particularly durable and are easily affected by weather. Most screw shafts feature self-locking mechanisms. They are especially useful in C-clamps, vises, and screw-top container lids.
For applications where accuracy is vital, a ball screw shaft needs to be annealed. A heat treatment can be performed on the ball screw shaft to ensure that both ends are heated evenly. In this process, the shaft will be more durable, while maintaining its high-precision properties. These screw shafts are a key component in computer-controlled motion-control systems, wire bonding, and other industries that require high-precision and high-quality performance.
Depending on the material used, screw shafts can be made of stainless steel or titanium. High-precision CNC machines and lathes are typically used to manufacture screw shafts. Various shapes and sizes are available, each with a specific application. Whether you need a small or large screw, you can find one to fit your needs. And since each size requires a different material, your choice of material is important as well.
In general, the materials used for machining screw shafts are steel, stainless steel, titanium, brass, bronze, and aluminum. Metals that resist corrosion are also commonly used. Other materials for screw shafts are Teflon, nylon, and nylon. You can also find threaded screw shafts in materials such as porcelain, glass, and ceramic. If you want to use your screws in a unique material, consider purchasing a customized one.

Ball screw nuts

If you have a screw shaft, the last thing you want to worry about is the ball nut slipping off. To prevent this, you can place a temporary stop in the shaft’s grooves to ensure that the ball nut does not slide off. When you remove the stop, you can then install the ball screw nut. But, before you can install the ball screw nut, you have to make sure that you have a good grip on the shaft.
When selecting ball screw nuts, it’s important to consider how much preload you need to apply to avoid excessive backlash. Preloading eliminates this problem by making the ball nut compact. It also prevents backlash, which is lost motion caused by clearance between the ball and nut. Backlash disrupts repeatability and accuracy. This is where spacer preloading comes in. You can insert a spacer between the two ball nuts to transmit the force to the nut. However, you should keep in mind that this method reduces the load capacity of the ball screw.
The critical speed of a screw is the maximum rotating speed before it whips. This critical speed is influenced by several factors, including the diameter of the screw shaft, the number of support elements, and the material. By adjusting these factors, you can reduce the number of components used and the amount of time it takes to assemble the screw shaft. In addition, you can also reduce the number of components and avoid stacking tolerances. However, the critical speed of plastic nuts is limited due to sliding friction.
The ball screw nut has several characteristics that make it unique. Its most prominent feature is the presence of ball bearings. These balls help reduce friction between the screw nut and the shaft. Without ball bearings, the friction would be too high to function properly. Another important characteristic is the groove profile of the nut and ball. These two features ensure that the ball and the nut meet at two points. You’ll be amazed by the results of the work of these ball screw nuts.
screwshaft

Threaded shank

Wood screws are usually not fully threaded because the shank has an unthreaded portion at the top. This shoulder part forces the screw to compress two pieces of wood, which prevents the screw from overheating and compromising the materials strength. As the screw is threaded partially up, it is not as difficult to remove as a fully threaded screw. However, it is important to note that a wood screw will not hold as tightly as one with a fully threaded shank.
In addition to being universal, screw threads can be of different sizes. For example, a M8 screw has a thread pitch of 1.25 mm. To avoid confusion, screw thread pitches are commonly given with a multiplication sign. For example, M8x1 means that the screw is eight mm in diameter but has a thread pitch of one mm per 360-degree rotation. Those who are not familiar with these dimensions may find it confusing.
The OD of the threaded portion of a bolt is generally smaller than the OD of the nut. If the shank is too deep for the nut to fit, the threads may bottom out. This is why it’s important to use a thread-cutting bit with a small thread diameter. You can use a micrometer or caliper to measure the thread diameter. This tool will also allow you to easily identify which screw size fits where and how well.
The metric system is the most widely used. Fasteners with DIN numbers are generally metric in size. This makes them very useful for industrial settings. You can find metric-sized screws anywhere, as long as you buy them from a reputable manufacturer. These fasteners also come with a dog point, which is used for safety wire. If the screw needs to be replaced, the shank can be drilled with a hole for a safety wire or for a dog-point.

Round head

A round head screw is the most common type used for machine screws. Other common types include truss head, flat head, and hexed head. Each has a different profile and are used for different purposes. A round head screw is typically wider than a flat or a hexed head, and has a slightly rounded surface. These screws are useful for projects involving sheet metal or sheet-metal parts. Round heads are usually slightly wider than a hex head screw, and they may also be used as a substitute for washers in certain applications. However, truss heads are not necessary for every project.
A wood screw has a smooth shank that protrudes above the surface of the material it is attaching. A metal screw has a threaded shaft that is fully threaded from head to point, and a fully threaded shaft provides more bite. Two common head styles are round head and pan head. If the task requires the screw to be flush or countersunk, the round head will be the best choice.
Another type is the Reed & Prince screw drive. These are similar to Phillips screws but have a 75-degree V shape. They are commonly used in marine hardware and are also known as BNAE NFL22-070. This type is also used for steel plate hangers. In addition to round head and pan head screws, there are a variety of other screw types. You can even get a head with a slotted head if you know where to look.
Screw diameters are specified according to the ISO 261 or ISO 262 standards. An M8 screw has a diameter of 8.25 mm. The M8 screw has a pitch of 1.25 mm, which is equivalent to one mm per 360 degrees. There are several other standard screw sizes and thread diameters available. You can find them all by consulting the relevant standards. But remember, the metric system is the most popular.
screwshaft

Self-locking mechanism

A self-locking mechanism for a screw shaft is a device that secures the screw to its supporting member in a failure position. The locking mechanism provides a positive connection between the screw shaft and the control surface during normal operation, and locks the screw to its supporting member when the screw fails. Previous attempts to solve this problem have typically used secondary nuts with free play on the screw, which were intentionally designed to jam when loaded. However, such a device can be unreliable, which is why the present invention offers a more robust and reliable locking mechanism.
The self-locking function of a screw depends on several factors, including its pitch angle and the coefficient of friction of the threads. The angle of friction must be less than the tangent of the material pairing to prevent untightening of the screw. Screws with self-locking mechanisms have an efficiency e lower than 50%, which is less than half. Self-locking screws also have the benefit of being less efficient than a standard screw.
Unlike a normal screw, a self-locking screw can be turned in either direction. The nut 22 rotates with the screw shaft, and the member 23 is translated in an axial direction. Regardless of the direction of the rotation of the screw, this axial translation will result in the opposite moment to that input moment. While screw self-locking mechanisms are typically less expensive, they are more reliable and durable.
Another important feature of self-locking screws is that they are not susceptible to independent loosening. The screw cannot rotate without a certain amount of torque. In addition, a self-locking screw shaft must have a small wedge with a smaller half-angle than the arctangent of the static friction. This means that the torque applied by the driver must be greater than the torque needed to overcome the friction.

China HB-310 Full automatic thread rolling machines for set screws     ball screw shaft hardnessChina HB-310 Full automatic thread rolling machines for set screws     ball screw shaft hardness
editor by czh 2023-07-03